Lecture 3A MTH6102: Bayesian Statistical Methods

Eftychia Solea

Queen Mary University of London

2023

Today's agenda

Today's lecture will cover

- Review Bayesian updating with continuous parameters and discrete data.
- Construct a posterior for continuous parameters and continuous data.
- Conjugate priors

Bayesian inference

- Suppose we have data y generated from $p(y \mid \theta)$ where θ is the unknown parameter.
- Start with the prior distribution $p(\theta)$ about θ .
- Likelihood is $p(y \mid \theta)$.
- The resulting probability distribution $p(\theta \mid y)$ is called the posterior distribution.

$$p(\theta \mid y) = \frac{p(\theta) p(y \mid \theta)}{p(y)} \propto p(\theta) p(y \mid \theta)$$

Posterior distribution \propto prior distribution \times likelihood

• Our inferences about θ are based on this posterior distribution.

Bayesian updating: Discrete likelihoods, continuous priors

- θ : continuous parameter with prior pdf $p(\theta)$ and range [a, b].
- x : random discrete data
- likelihood: $p(x|\theta)$

Bayesian updating table

Hypothesis	prior prob	likelihood	Bayes numerator	posterior prob. $p(\theta x)d\theta$
θ	$p(\theta)d\theta$	$p(x \theta)$	$p(x \theta)p(\theta)d\theta$	$\frac{p(x \theta)p(\theta)d\theta}{p(x)}$
Total	$\int_a^b p(\theta)d\theta = 1$		$p(x) = \int_{a}^{b} p(x \theta)p(\theta)d\theta$	1

• The posterior density $p(\theta|x)$ is obtained by removing $d\theta$ from the posterior probability in the table.

Binomial data/beta prior example

- $Y \sim \text{binom}(n, q)$ with unknown binomial probability of success q.
- We observe Y = k successes in n trials.
- The binomial likelihood p(k|q) for this problem is:

$$p(k \mid q) = \binom{n}{k} q^k (1-q)^{n-k}$$

• Convenient prior distribution for q is Beta (α, β) :

$$p(q) = \frac{q^{\alpha-1}(1-q)^{\beta-1}}{B(\alpha,\beta)}$$

Binomial data/beta prior example

Posterior \propto prior \times likelihood

$$egin{aligned} p(q \mid k) &\propto p(q) imes p(k \mid q) \ &= rac{q^{lpha - 1}(1 - q)^{eta - 1}}{B(lpha, eta)} imes inom{n}{k} q^k (1 - q)^{n - k} \end{aligned}$$

Hence the posterior distribution is proportional to

$$p(q \mid k) \propto q^{k+\alpha-1} (1-q)^{n-k+\beta-1}$$

From this, we can recognise that the posterior distribution $p(q \mid k)$ is the Beta $(k + \alpha, n - k + \beta)$ distribution.

General Beta
$$(a,b)$$
 pdf: $f(x) = \frac{x^{a-1}(1-x)^{b-1}}{B(a,b)}$

Bayesian updating table: Binomial data/beta prior

- Data k generated from \sim Binom(n,q), with q unknown
- Continuous hypotheses q in [0, 1].
- Beta (α, β) prior p(q)
- Binomial likelihood p(k|q)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Hypothesis	prior prob.	likelihood	Bayes numerator	posterior prob.
Total 1 $T = \int_{0}^{1} cq^{k+\alpha-1} (1-q)^{n-k+\beta-1} dq$ 1	q	Beta (α, β) dq	binomial(n, q)	$cq^{k+\alpha-1}(1-q)^{n-k+\beta-1}dq$	Beta $(k + \alpha, n - k + \beta)dq$
	Total	1		$T = \int_0^1 cq^{k+\alpha-1} (1-q)^{n-k+\beta-1} dq$	1

- The posterior density is Beta $(k + \alpha, n k + \beta)$
- **Note:** We don't need to compute T. Once we know the posterior is of the form $cq^{k+\alpha-1}(1-q)^{n-k+\beta-1}$ we have to find c that makes it a proper density. In this case $c=1/\text{Beta}(k+\alpha,n-k+\beta)$

Conjugate distributions

- Beta (α, β) prior distribution for q
- Binomial likelihood $k \sim Bin(n, q)$
- Beta $(k + \alpha, n k + \beta)$ posterior distribution for $q \mid k$
- In this example, we have the same family of distributions for the prior and posterior distribution.
- This is known as a conjugate distribution.
- "The family of Beta distributions is conjugate to the binomial likelihood".

Conjugate distributions

Binomial likelihood:
$$p(k \mid q) = \binom{n}{k} q^k (1-q)^{n-k}$$

Beta prior:
$$p(q) = \frac{q^{\alpha-1}(1-q)^{\beta-1}}{B(\alpha,\beta)}$$

- Considered as functions of q, the prior and likelihood have the same functional form as each other (proportional to $q^r(1-q)^s$ for some r,s).
- When we multiply them together, we still have the same form.
- This is what characterises conjugate distributions.

- Suppose your prior in the bent coin example is Beta(6,8). You flip the coin 7 times, getting 2 heads and 5 tails. What is the posterior pdf $p(\theta|x)$?
 - Beta(2,5)
 - ② Beta(3,6)
 - 3 Beta(6,8)
 - Beta(8, 13)

- ullet A medical treatment has unknown probability heta of success.
- We assume treatment has prior $f(\theta) \sim \text{Beta}(5,5)$.
 - ① Suppose you test it on 10 patients and have 6 successes. Find the posterior distribution on θ . Identify the type of the posterior pdf
 - ② Suppose you recorded the order of the results and got SSSFFSSSFF. Find the posterior based on this new data.

Bayesian updating: continuous priors, continuous data

We are now ready to do Bayesian updating when both the parameters and the data take continuous values.

- ullet θ continuous parameter
- Prior pdf, $f(\theta)$
- Data: continuous $x \sim f(x|\theta)$
- Likelihood: $f(x|\theta)$
- posterior pdf, $f(\theta|x)$
- Bayesian update table

Hypothesis	prior prop	likelihood	Bayes numerator	posterior prop $f(x \theta)d\theta$
θ	$f(\theta)d\theta$	$f(x \theta)$	$f(x \theta) f(\theta)d\theta$	$\frac{f(x \theta)f(\theta)d\theta}{f(x)}$
Total	1		f(x)	1

•
$$f(x) = \int f(x|\theta) f(\theta) d\theta$$

•
$$y_1, \ldots, y_n \sim N(\mu, \sigma^2)$$
.

- It's simpler if only one parameter is unknown.
- ullet First, consider case where only μ is unknown.
- Is there a conjugate prior for μ ?

- Observed data $y_1, \ldots, y_n \sim N(\mu, \sigma^2)$ with μ unknown and σ^2 known.
- Prior distribution $\mu \sim \mathcal{N}(\mu_0, \sigma_0^2)$.
- The posterior distribution is

$$\mu \sim \mathcal{N}(\mu_1, \sigma_1^2)$$

where

$$\mu_1 = \left(\frac{\mu_0}{\sigma_0^2} + \frac{n\bar{y}}{\sigma^2}\right) / \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right)$$
$$\sigma_1^2 = 1 / \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right)$$

Normal-normal Bayesian update table

- Data: $x \sim \mathcal{N}(\mu, \sigma^2)$, σ^2 known
- Likelihood: $f(x|\mu) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{1}{2\sigma^2}(x-\mu)^2\}.$
- $m{\bullet}$ μ continuous with prior pdf $f(heta) \sim \mathcal{N}(\mu_{\scriptscriptstyle 0}, \sigma_{\scriptscriptstyle 0}^{\scriptscriptstyle 2})$
- posterior $f(\mu|x) \sim \mathcal{N}(\mu_1, \sigma_1^2)$

Hypothesis	prior prop	likelihood	Bayes numerator	posterior prop $f(x \mu)d\mu$
μ	$\frac{1}{\sqrt{2\pi\sigma_0^2}} \exp\{-\frac{1}{2\sigma_0^2}(\mu - \mu_0)^2\}d\mu$	$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{1}{2\sigma^2}(x-\mu)^2\}$	$c_1 \exp \left\{-\frac{1}{2\sigma_1^2}(\mu - \mu_1)^2\right\} d\mu$	$\frac{f(x \mu)f(\mu)d\mu}{f(x)} = \frac{1}{\sqrt{2\pi\sigma_1^2}} \exp\{-\frac{1}{2\sigma_1^2}(\mu - \mu_1)^2\}d\mu$
Total	1		$f(x) = \int_{-\infty}^{\infty} c_1 \exp\{-\frac{1}{2\sigma_1^2}(\mu - \mu_1)^2\}d\mu$	1

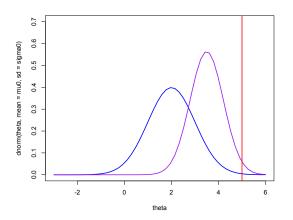
Normal-normal updating formulas

$$a = \frac{1}{\sigma_0^2}, \quad b = \frac{n}{\sigma^2},\tag{1}$$

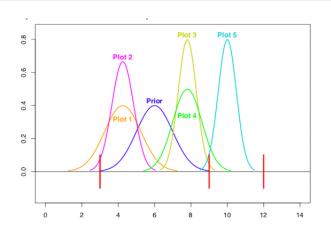
$$\mu_1 = \frac{a\mu_0 + b\bar{y}}{a+b}, \quad \sigma_1^2 = \frac{1}{a+b}$$
(2)

- The posterior mean μ_1 is a weighted average of the prior mean μ_0 and sample average \bar{y} .
- If n is large then the weight b is large and \bar{y} will have a strong influence on the posterior. In fact if $n \to \infty$, $b/(a+b) \to 1$ and $a/(a+b) \to 0$, so $\mu_1 \to \bar{y}$.
- If σ_0^2 is small then the weight a is large and μ_0 will have a strong influence on the posterior

- Suppose our data follows a $N(\theta, 1)$ distribution with unknown mean θ .
- Suppose our prior on θ is N(2,1).
- Suppose we obtain data x = 5
- Compute the Bayesian update table and show that the posterior pdf for θ is Normal
- Find the posterior mean and the posterior variance
- Use the updating formulas (1) to find the posterior mean and posterior variance.



prior: blue, posterior: purple, x=5 (data). The posterior mean lies between the data x=5 and the prior mean.



- **4** Which plot is the posterior to just the first data value x = 3?
- Which plot is the posterior to all 3 data values, x = 3, x = 9 and x = 12?

On a basketball team the free throw percentage over all players is a N(75,36) distribution. In a given year individual players free throw percentage is $N(\theta,16)$ where θ is their career average.

This season, Sophie Lee made 85 percent of her free throws.

4 What is the posterior expected values of her career percentage θ ?

Exponential model

- The time until failure for a type of light bulb is exponentially distributed with parameter λ .
- We observe *n* bulbs, with failure times $t = t_1, \ldots, t_n$.
- The unknown parameter is λ .
- Can we find a conjugate family of distributions for this likelihood?

Conjugate priors

• A prior is conjugate to a likelihood if the posterior is the same type of distribution as the prior.

	hypothesis	data	prior	likelihood	posterior
Bernoulli/Beta	$\theta \in [0,1]$	X	$Beta(\alpha, \beta)$	Bernoulli(θ)	$Beta(\alpha+1,\beta)$ or $Beta(\alpha,\beta+1)$
	θ	x = 1	$c_1\theta^{\alpha-1}(1-\theta)^{b-1}$	θ	$c_3\theta^{\alpha}(1-\theta)^{\beta-1}$
	θ	x = 0	$c_1\theta^{\alpha-1}(1-\theta)^{b-1}$	1-θ	$c_3\theta^{\alpha-1}(1-\theta)^{\beta}$
Binomial/Beta	$\theta \in [0,1]$	x	$Beta(\alpha, \beta)$	binomial (n, θ)	$beta(\alpha + x, \beta + n - x)$
(fixed n)	θ	X	$c_1\theta^{\alpha-1}(1-\theta)^{b-1}$	$c_2\theta^x(1-\theta)^{n-x}$	$c_3\theta^{\alpha+\kappa-1}(1-\theta)^{\beta+n-\kappa-1}$
Normal/Normal	$\theta \in \mathbb{R}$	X	$N(\mu_0, \sigma_0^2)$	$N(\theta, \sigma^2)$	$N(\mu_1, \sigma_1^2)$
(fixed σ^2)	θ	$c_1 \exp\{-\frac{1}{2\sigma_0^2}(\theta - \mu_0)^2\}$	x	$c_2 \exp\{-\frac{1}{2\sigma^2}(x-\mu)^2\}$	$c_3 \exp \left\{-\frac{1}{2\sigma_1^2}(\theta - \mu_1)^2\right\}$

Which are conjugate priors for the following pairs likelihood/prior?

- Exponential/Normal
- Exponential/Gamma
- Binomial/Normal

Suppose the prior has been set. Let x_1 and x_2 be two sets of data. Which of the following are true?

- If the likelihoods $f(x_1|\theta)$ and $f(x_2|\theta)$ are the same then they result in the same posterior.
- If x_1 and x_2 result in the same posterior then their likelihood functions are the same.
- If the likelihoods $f(x_1|\theta)$ and $f(x_2|\theta)$ are proportional then they result in the same posterior.
- If two likelihoods functions are proportional then they are equal.

E. Solea, QMUL