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Today's lecture will cover

o Review Bayesian updating with continuous parameters and discrete
data.

o Construct a posterior for continuous parameters and continuous
data.

o Conjugate priors
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Bayesian inference

o Suppose we have data y generated from p(y | §) where 6 is the
unknown parameter.

o Start with the prior distribution p(6) about 6.
o Likelihood is p(y | 6).
o The resulting probability distribution p(6 | y) is called the posterior

distribution.
p(6) p(y | 6)
p(0|y)=———"—"ocp(@)ply|?
(01y) o) (0) p(y | 0)
Posterior distribution o< prior distribution X likelihood )

@ Our inferences about 6 are based on this posterior distribution.
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Bayesian updating: Discrete likelihoods, continuous priors

@ 0 : continuous parameter with prior pdf p(f) and range [a, b].
o x : random discrete data
o likelihood: p(x|0)

Bayesian updating table

Hypothesis | prior prob likelihood | Bayes numerator posterior prob. p(8|x)df
] p(0)d0 p(xI0) | pxI0)p(0)d0 S0
Total [T p(0)do =1 p(x) = [ p(x|0)p(0)do | 1

© The posterior density p(6|x) is obtained by removing df from the
posterior probability in the table.
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Binomial data/beta prior example

o Y ~ binom(n, g) with unknown binomial probability of success g.
o We observe Y = k successes in n trials.

o The binomial likelihood p(k|q) for this problem is:

n _
plkla) = ()o@ - ar
o Convenient prior distribution for q is Beta(c, 3):

_ g (1-gt
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Binomial data/beta prior example

Posterior ox prior x likelihood

p(q | k) o< p(q) x p(k | q)

a—1 _ B—1 n
_ q B(:(I-a 5) % <k> qk(l _ q)nfk

Hence the posterior distribution is proportional to

k+a71(1 _ )nfk+ﬁfl

plq| k) xq q

From this, we can recognise that the posterior distribution p(q | k) is the
Beta(k + a, n — k + 3) distribution.

Xafl(l _ X)bfl

General Beta(a, b) pdf: f(x) = B(a, b)
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Bayesian updating table: Binomial data/beta prior

Data k generated from ~ Binom(n,q), with g unknown
Continuous hypotheses g in [0, 1].

Beta(a, 3) prior p(q)
Binomial likelihood p(k|q)

© 0 © ¢

Hypothesis | prior prob. likelihood Bayes numerator posterior prob.
q Beta(a, 8)dq | binomial(n, q) | cg***'(1 — q)""*"*"'dq Beta(k + o, n — k + 8)dq
Total 1 T = f; g (1 —q)"**'dg | 1

o The posterior density is Beta(k + a, n — k + 3)

@ Note: We don't need to compute T. Once we know the posterior is
of the form cg*+*~*(1 — q)"~***~' we have to find ¢ that makes it a
proper density. In this case ¢ = 1/Beta(k + a,n — k + f3)
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Conjugate distributions

e Beta(a, () prior distribution for g
o Binomial likelihood k ~ Bin(n, q)
o Beta(k + a, n — k + ) posterior distribution for q | k

@ In this example, we have the same family of distributions for the
prior and posterior distribution.

@ This is known as a conjugate distribution.

o “The family of Beta distributions is conjugate to the binomial
likelihood".
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Conjugate distributions

Binomial likelihood: p(k | q) = (Z) qg“(1 —q)"*

¢ (1-q) "

Beta prior: p(q) = B(a. 5)

o Considered as functions of g, the prior and likelihood have the same
functional form as each other (proportional to g"(1 — g)* for some
r,s).

@ When we multiply them together, we still have the same form.

o This is what characterises conjugate distributions.
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@ Suppose your prior in the bent coin example is Beta(6,8). You flip
the coin 7 times, getting 2 heads and 5 tails. What is the posterior
pdf p(6]x)?

@ Beta(2,5)
@ Beta(3,6)
@ Beta(6,8)
@ Beta(8,13)
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Board question

o A medical treatment has unknown probability 8 of success.

o We assume treatment has prior f(6) ~ Beta(5,5).

@ Suppose you test it on 10 patients and have 6 successes. Find the
posterior distribution on 6. ldentify the type of the posterior pdf

@ Suppose you recorded the order of the results and got SSSFFSSSFF.
Find the posterior based on this new data.
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Bayesian updating: continuous priors, continuous data

We are now ready to do Bayesian updating when both the parameters
and the data take continuous values.

o 6 continuous parameter

@ Prior pdf, £(0)

o Data: continuous x ~ f(x|6)
o Likelihood: f(x|0)

@ posterior pdf, (0|x)

o Bayesian update table

Hypothesis | prior prop | likelihood | Bayes numerator | posterior prop f(x|0)dd
0 f(9)do f(x|6) f(x|0) f(0)do W
Total 1 f(x) 1

©

f(x) = [ f(x]0) f(0)do
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_-nple, known variance

2
O Y1,y ¥Yn~ N(u,o%).

o It's simpler if only one parameter is unknown.
o First, consider case where only p is unknown.

@ Is there a conjugate prior for u?
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-xample, known variance

o Observed data yi, ..., Yy, ~ N(u,0?) with g unknown and o known.
o Prior distribution 1 ~ N (uo,03).

@ The posterior distribution is
p~ N(p,03)

where
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Normal example, known variance

Normal-normal Bayesian update table

o Data: x ~ N(u,0?), o* known
o Likelihood: f(x|u) = \/2:;7 exp{— 555 (x — p)*}.
@ p continuous with prior pdf £(0) ~ N (1, 02)

o posterior f(u|x) ~ N (p1,02)

Hypothesis | prior prop Tikelihood Bayes numerator posterior prop F(x|1)dp
" oz olmg =i | s ep{ =g (=)'} | cep{—gz(n—m)}dn TClprds — i ol —m)}an
Total 1 0 = = aexp{—gmz(u—m)}dp [ 1
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Normal example, known variance

Normal-normal updating formulas

n

b= (1)

o2’
a/’L0+b.)_/ 2 1
= —mn—_ = 2
1 2—|—b 9 01 a+b ()

@ The posterior mean p, is a weighted average of the prior mean
and sample average y.

o If nis large then the weight b is large and y will have a strong
influence on the posterior. In fact if n — oo, b/(a+ b) — 1 and
af/(a+b)—0,s0 pu, —y.

o If 03 is small then the weight a is large and p, will have a strong
influence on the posterior
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Board question

o Suppose our data follows a N(6,1) distribution with unknown mean
0.

@ Suppose our prior on 6 is N(2,1).
@ Suppose we obtain data x =5

@ Compute the Bayesian update table and show that the posterior pdf
for 0 is Normal

@ Find the posterior mean and the posterior variance

@ Use the updating formulas (1) to find the posterior mean and
posterior variance.
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prior: blue, posterior: purple, x =5 (data).
The posterior mean lies between the data x =5 and the prior mean.
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@ Which plot is the posterior to just the first data value x = 3?

@ Which plot is the posterior to all 3 data values, x =3, x =9 and
x =127
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Board question

On a basketball team the free throw percentage over all players is a
N(75,36) distribution. In a given year individual players free throw
percentage is N(6,16) where 0 is their career average.

This season, Sophie Lee made 85 percent of her free throws.

@ What is the posterior expected values of her career percentage 67
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-nential model

o The time until failure for a type of light bulb is exponentially
distributed with parameter .

o We observe n bulbs, with failure times t = t1,..., t,.
@ The unknown parameter is A.

o Can we find a conjugate family of distributions for this likelihood?

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Conjugate priors

@ A prior is conjugate to a likelihood if the posterior is the same type
of distribution as the prior.

hypothesis | data prior likelihood posterior
Bernoulli/Beta | # €[0,1] | x Beta(a, 3) Bernoulli() Beta(a + 1, 8) or Beta(a, 5+ 1)
[ x=1 G010y |0 o (1— 0y~
[ x=0 G010y | 10 01— 0)
Binomial/Beta | 0 €[0,1] | x Beta(a, 3) binomial(n, 0) beta(a + x, 8+ n—x)
(fixed n) [ x af"(1—0)"" | b (1—6)~ [ O )
Normal/Normal | § € R x N(p1o, 02) N(9,0%) N(p,,07)
(fixed 0?) 0 = exp{fi((? — o)} | x cexp{—55(x —u)¢} | o exp{fﬁ(ﬁ — )}
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Which are conjugate priors for the following pairs likelihood/prior?
@ Exponential /Normal

@ Exponential/Gamma
@ Binomial/Normal
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Board question

Suppose the prior has been set. Let x, and x; be two sets of data. Which
of the following are true?

o If the likelihoods f(x]6) and f(x,|0) are the same then they result in
the same posterior.

o If x; and x, result in the same posterior then their likelihood
functions are the same.

o If the likelihoods f(x|0) and f(x,|0) are proportional then they
result in the same posterior.

o If two likelihoods functions are proportional then they are equal.
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