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Today’s agenda

Today’s lecture will cover

Review Bayesian updating with continuous parameters and discrete

data.

Construct a posterior for continuous parameters and continuous

data.

Conjugate priors
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Bayesian inference

Suppose we have data y generated from p(y | θ) where θ is the

unknown parameter.

Start with the prior distribution p(θ) about θ.

Likelihood is p(y | θ).

The resulting probability distribution p(θ | y) is called the posterior

distribution.

p(θ | y) =
p(θ) p(y | θ)

p(y)
∝ p(θ) p(y | θ)

Posterior distribution ∝ prior distribution × likelihood

Our inferences about θ are based on this posterior distribution.
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Bayesian updating: Discrete likelihoods, continuous priors

θ : continuous parameter with prior pdf p(θ) and range [a, b].

x : random discrete data

likelihood: p(x |θ)

Bayesian updating table

Hypothesis prior prob likelihood Bayes numerator posterior prob. p(θ|x)dθ

θ p(θ)dθ p(x |θ) p(x |θ)p(θ)dθ p(x|θ)p(θ)dθ
p(x)

Total
∫ b

a
p(θ)dθ = 1 p(x) =

∫ b

a
p(x |θ)p(θ)dθ 1

The posterior density p(θ|x) is obtained by removing dθ from the

posterior probability in the table.
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Binomial data/beta prior example

Y ∼ binom(n, q) with unknown binomial probability of success q.

We observe Y = k successes in n trials.

The binomial likelihood p(k |q) for this problem is:

p(k | q) =

(
n

k

)
qk(1− q)n−k

Convenient prior distribution for q is Beta(α, β):

p(q) =
qα−1(1− q)β−1

B(α, β)
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Binomial data/beta prior example

Posterior ∝ prior × likelihood

p(q | k) ∝ p(q)× p(k | q)

=
qα−1(1− q)β−1

B(α, β)
×
(
n

k

)
qk(1− q)n−k

Hence the posterior distribution is proportional to

p(q | k) ∝ qk+α−1(1− q)n−k+β−1

From this, we can recognise that the posterior distribution p(q | k) is the

Beta(k + α, n − k + β) distribution.

General Beta(a, b) pdf: f (x) =
xa−1(1− x)b−1

B(a, b)
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Bayesian updating table: Binomial data/beta prior

Data k generated from ∼ Binom(n,q), with q unknown

Continuous hypotheses q in [0, 1].

Beta(α, β) prior p(q)

Binomial likelihood p(k |q)

Hypothesis prior prob. likelihood Bayes numerator posterior prob.

q Beta(α, β)dq binomial(n, q) cqk+α−1(1− q)n−k+β−1dq Beta(k + α, n − k + β)dq

Total 1 T =
∫ 1

0
cqk+α−1(1− q)n−k+β−1dq 1

The posterior density is Beta(k + α, n − k + β)

Note: We don’t need to compute T . Once we know the posterior is

of the form cqk+α−1(1− q)n−k+β−1 we have to find c that makes it a

proper density. In this case c = 1/Beta(k + α, n − k + β)
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Conjugate distributions

• Beta(α, β) prior distribution for q

• Binomial likelihood k ∼ Bin(n, q)

• Beta(k + α, n − k + β) posterior distribution for q | k

In this example, we have the same family of distributions for the

prior and posterior distribution.

This is known as a conjugate distribution.

“The family of Beta distributions is conjugate to the binomial

likelihood”.
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Conjugate distributions

Binomial likelihood: p(k | q) =

(
n

k

)
qk(1− q)n−k

Beta prior: p(q) =
qα−1(1− q)β−1

B(α, β)

Considered as functions of q, the prior and likelihood have the same

functional form as each other (proportional to qr (1− q)s for some

r , s).

When we multiply them together, we still have the same form.

This is what characterises conjugate distributions.
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Board question

Suppose your prior in the bent coin example is Beta(6, 8). You flip

the coin 7 times, getting 2 heads and 5 tails. What is the posterior

pdf p(θ|x)?

1 Beta(2, 5)
2 Beta(3, 6)
3 Beta(6, 8)
4 Beta(8, 13)
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Board question

A medical treatment has unknown probability θ of success.

We assume treatment has prior f (θ) ∼ Beta(5, 5).

1 Suppose you test it on 10 patients and have 6 successes. Find the

posterior distribution on θ. Identify the type of the posterior pdf
2 Suppose you recorded the order of the results and got SSSFFSSSFF.

Find the posterior based on this new data.
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Bayesian updating: continuous priors, continuous data

We are now ready to do Bayesian updating when both the parameters

and the data take continuous values.

θ continuous parameter

Prior pdf, f (θ)

Data: continuous x ∼ f (x |θ)

Likelihood: f (x |θ)

posterior pdf, f (θ|x)

Bayesian update table

Hypothesis prior prop likelihood Bayes numerator posterior prop f (x |θ)dθ

θ f (θ)dθ f (x |θ) f (x |θ) f (θ)dθ f (x|θ)f (θ)dθ
f (x)

Total 1 f (x) 1

f (x) =
∫
f (x |θ) f (θ)dθ
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Normal example, known variance

y1, . . . , yn ∼ N(µ, σ2).

It’s simpler if only one parameter is unknown.

First, consider case where only µ is unknown.

Is there a conjugate prior for µ?
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Normal example, known variance

Observed data y1, . . . , yn ∼ N(µ, σ2) with µ unknown and σ2 known.

Prior distribution µ ∼ N (µ0, σ
2
0).

The posterior distribution is

µ ∼ N (µ1, σ
2
1)

where

µ1 =

(
µ0

σ2
0

+
nȳ

σ2

)/(
1

σ2
0

+
n

σ2

)

σ2
1 = 1

/(
1

σ2
0

+
n

σ2

)
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Normal example, known variance

Normal-normal Bayesian update table

Data: x ∼ N (µ, σ2), σ2 known

Likelihood: f (x |µ) = 1√
2πσ2

exp{− 1
2σ2 (x − µ)2}.

µ continuous with prior pdf f (θ) ∼ N (µ0, σ
2
0)

posterior f (µ|x) ∼ N (µ1, σ
2
1)

Hypothesis prior prop likelihood Bayes numerator posterior prop f (x |µ)dµ

µ 1√
2πσ2

0

exp{− 1
2σ2

0
(µ− µ0)

2}dµ 1√
2πσ2

exp{− 1
2σ2 (x − µ)2} c1 exp{− 1

2σ2
1
(µ− µ1)

2}dµ f (x|µ)f (µ)dµ
f (x) = 1√

2πσ2
1

exp{− 1
2σ2

1
(µ− µ1)

2}dµ

Total 1 f (x) =
∫∞
−∞

c1 exp{− 1
2σ2

1
(µ− µ1)

2}dµ 1
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Normal example, known variance

Normal-normal updating formulas

a =
1

σ2
0

, b =
n

σ2
, (1)

µ1 =
aµ0 + bȳ

a + b
, σ2

1 =
1

a + b
(2)

The posterior mean µ1 is a weighted average of the prior mean µ0

and sample average ȳ .

If n is large then the weight b is large and ȳ will have a strong

influence on the posterior. In fact if n→∞, b/(a + b)→ 1 and

a/(a + b)→ 0, so µ1 → ȳ .

If σ2
0 is small then the weight a is large and µ0 will have a strong

influence on the posterior
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Board question

Suppose our data follows a N(θ, 1) distribution with unknown mean

θ.

Suppose our prior on θ is N(2, 1).

Suppose we obtain data x = 5

Compute the Bayesian update table and show that the posterior pdf

for θ is Normal

Find the posterior mean and the posterior variance

Use the updating formulas (1) to find the posterior mean and

posterior variance.
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Board question

-2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

theta

dn
or

m
(th

et
a,

 m
ea

n 
= 

m
u0

, s
d 

= 
si

gm
a0

)

prior: blue, posterior: purple, x = 5 (data).

The posterior mean lies between the data x = 5 and the prior mean.
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Board question

1 Which plot is the posterior to just the first data value x = 3?

2 Which plot is the posterior to all 3 data values, x = 3, x = 9 and

x = 12?
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Board question

On a basketball team the free throw percentage over all players is a

N(75, 36) distribution. In a given year individual players free throw

percentage is N(θ, 16) where θ is their career average.

This season, Sophie Lee made 85 percent of her free throws.

1 What is the posterior expected values of her career percentage θ?
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Exponential model

The time until failure for a type of light bulb is exponentially

distributed with parameter λ.

We observe n bulbs, with failure times t = t1, . . . , tn.

The unknown parameter is λ.

Can we find a conjugate family of distributions for this likelihood?
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Conjugate priors

A prior is conjugate to a likelihood if the posterior is the same type

of distribution as the prior.

hypothesis data prior likelihood posterior

Bernoulli/Beta θ ∈ [0, 1] x Beta(α, β) Bernoulli(θ) Beta(α + 1, β) or Beta(α, β + 1)

θ x = 1 c1θ
α−1(1− θ)b−1 θ c3θ

α(1− θ)β−1

θ x = 0 c1θ
α−1(1− θ)b−1 1-θ c3θ

α−1(1− θ)β

Binomial/Beta θ ∈ [0, 1] x Beta(α, β) binomial(n, θ) beta(α + x , β + n − x)

(fixed n) θ x c1θ
α−1(1− θ)b−1 c2θ

x(1− θ)n−x c3θ
α+x−1(1− θ)β+n−x−1

Normal/Normal θ ∈ R x N(µ0, σ
2
0) N(θ, σ2) N(µ1, σ

2
1)

(fixed σ2) θ c1 exp{− 1
2σ2

0
(θ − µ0)

2} x c2 exp{− 1
2σ2 (x − µ)2} c3 exp{− 1

2σ2
1
(θ − µ1)

2}
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Board question

Which are conjugate priors for the following pairs likelihood/prior?

1 Exponential/Normal

2 Exponential/Gamma

3 Binomial/Normal
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Board question

Suppose the prior has been set. Let x1 and x1 be two sets of data. Which

of the following are true?

If the likelihoods f (x1|θ) and f (x2|θ) are the same then they result in

the same posterior.

If x1 and x2 result in the same posterior then their likelihood

functions are the same.

If the likelihoods f (x1|θ) and f (x2|θ) are proportional then they

result in the same posterior.

If two likelihoods functions are proportional then they are equal.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods


