University of London
MTH6115
Cryptography

Solutions 12

1 (a) For every $j \geq 0,1+2+2^{2}+2^{3}+\cdots+2^{j-1}=2^{j}-1<2^{j}$.
(b) Induction. Suppose true for j. So $\sum_{i=1}^{j-1} a_{i}<a_{j}$. Add a_{j} to both sides:

$$
\sum_{i=1}^{j} a_{i}<a_{j}+a_{j} \leq a_{j+1} .
$$

(c) Easy.

2 The sequence a_{1}, \ldots, a_{11} is super-increasing, and therefore the unique solution is obtained efficiently using the greedy algorithm, which would also tell us that a solution exists here. We get that $2135=1792+221+108+13+1$.

3 Clearly this sequence is not super-increasing, even when rearranged into ascending order. The inverse of 1371 modulo 8191 is 6787 . Multiplying Bob's public key by 6787 modulo 8191 gives the super-increasing sequence

$$
\left(a_{1}^{\prime}, \ldots, a_{11}^{\prime}\right)=(1,5,12,26,54,113,230,466,939,1880,3763) .
$$

Bob would calculate $b^{\prime}=6787 \cdot 11872(\bmod 8191)=397$ as a subsum of the superincreasing sequence using the greedy algorithm to get that $397=54+113+230$. So, the e_{i} 's are $0,0,0,0,1,1,1,0,0,0,0$ and Alice's message is 00001110000 .

