University of London
MTH6115
Cryptography

Solutions 11

1 Since $163-1=162=2 \cdot 3^{4}$, in order to show that 2 is a primitive element modulo 163 we must show that $2^{162} \equiv 1(\bmod 163)$, while $2^{162 / 2}=2^{81} \not \equiv 1(\bmod 163)$ and $2^{162 / 3}=2^{54} \not \equiv 1(\bmod 163)$. The calculations to do this are given below.

$$
\begin{gathered}
2^{3}=8, \quad 2^{9}=512 \equiv 23, \quad 2^{27}=\left(2^{9}\right)^{3} \equiv 23^{3}=12167 \equiv 105 \equiv-58 \\
2^{54}=\left(2^{27}\right)^{2} \equiv(-58)^{2}=3364 \equiv 104 \equiv-59, \\
2^{81}=2^{27} \cdot 2^{54} \equiv(-58) \cdot(-59)=3422 \equiv 162 \equiv-1, \quad 2^{162}=\left(2^{81}\right)^{2} \equiv(-1)^{2}=1 .
\end{gathered}
$$

For the rest of this question, the (not-so-)subtle hint is to search for an integer n such that $n \equiv a(\bmod 163)$ and n has the form $n=(-1)^{\varepsilon} \cdot 2^{\alpha} \cdot 3^{\beta} \cdot 5^{\gamma} \cdot 7^{\delta}$. Then $\log _{2}(n)=81 \varepsilon+\alpha+101 \beta+15 \gamma+73 \delta$, which we may reduce modulo 162 . Therefore we have:
(a) We have $20=2^{2} \cdot 5$, and so $\log _{2}(20)=2+15=17$.
(b) We have $90=2 \cdot 3^{2} \cdot 5$, and so $\log _{2}(90)=1+2 \cdot 101+15=218 \equiv 56$.
(c) We have $11+3 \cdot 163=500=2^{2} \cdot 5^{3}$, and so $\log _{2}(11)=2+3 \cdot 15=47$. (Alternatively, $11-2 \cdot 163=-315=(-1) \cdot 3^{2} \cdot 5 \cdot 7$, and so $\log _{2}(11)=$ $81+2 \cdot 101+15+73=371 \equiv 47$.)
(d) We have $161-163=-2=(-1) \cdot 2$, and so $\log _{2}(161)=81+1=82$. (Alternatively, $161+163=324=2^{2} \cdot 3^{4}$, and so $\log _{2}(161)=2+4 \cdot 101=$ $406 \equiv 82$.)
(e) We have $26+163=189=3^{3} \cdot 7$, and so $\log _{2}(26)=3 \cdot 101+73=376 \equiv 52$. (Alternatively, $26-2 \cdot 163=-300=(-1) \cdot 2^{2} \cdot 3 \cdot 5^{2}$, and so $\log _{2}(26)=$ $81+2+101+2 \cdot 15=214 \equiv 52$.)
(f) We have $67-163=-96=(-1) \cdot 2^{5} \cdot 3$, and so $\log _{2}(67)=81+5+101=$ $187 \equiv 25$.

In all cases, congruences at the end are modulo 162.

2 Let us take the arbitrary value of k to be 37 . Then the message $x=164$ gets encrypted to $\left(g^{k}, x h^{k}\right)$, where both parts are taken modulo $p=619$. So here I get encryption $(402,484)$. Other answers are possible.

The decryption of $(581,201)$ is $201 \cdot 581^{-110} \equiv 297(\bmod 619)$. (The value of k used to encrypt this was 75 , but you do not need to find this, and I used the discrete logarithm to do so.)

3 The rest of Alice's and Bob's public keys are

$$
\begin{aligned}
& h_{A} \equiv 2^{43} \equiv 7 \bmod 107, \\
& h_{B} \equiv 2^{23} \equiv 22 \bmod 107
\end{aligned}
$$

To encrypt $x=35$, pick a random number k prime to 106 and encrypts x as $\left(2^{k}, x \cdot 22^{k}\right)$ modulo 107 . For example, if you pick $k=11$, then $2^{11} \equiv 15 \bmod 107$, $22^{11} \equiv 82 \bmod 107$ and the encrypted message is $\left(2^{11}, 35 \cdot 22^{11}\right)=(15,88) \bmod 107$.

To sign $y=27$ Alice picks a random number m (coprime to 106), and calculates $l=m^{-1} \bmod 106$. Then she calculates $z_{1} \equiv 2^{m} \bmod 107$ and $z_{2}=\left(y-a z_{1}\right) l \bmod$ 106 and sends $\left(y, z_{1}, z_{2}\right)$. For example, if she picks $m=21$, then $l=-5$ is the inverse of m modulo 106. Then, $z_{1} \equiv 2^{21} \equiv 59 \bmod 107$ and $z_{2} \equiv(27-43$. $59)(-5) \equiv 42 \bmod 106$. The signed message is $(27,59,42)$.

4 (a) We have $5^{251} \equiv-1(\bmod 503)$, and $7^{251} \equiv 1(\bmod 503)$. (We use the 'squaring table' for the fast computation of these numbers.) So, 5 is a primitive root, but 7 is not.
(b) We have $2^{659} \equiv 1(\bmod 1319), 7^{659} \equiv 1(\bmod 1319)$, and $13^{659} \equiv-1(\bmod 1319)$. So, 13 is a primitive root, but 2 and 7 are not.

