6"
 University of London

MTH6115

Cryptography

Solutions 10

1 Factorise 1728 as $2^{6} .27$, and pick a value of x, say $x=5$. Now we calculate $x^{27} \equiv 5^{27} \equiv 1217 \bmod 1729$, and keep squaring: $1217^{2} \equiv 1065,1065^{2} \equiv 1$. Since $1065 \neq \pm 1 \bmod 1729$ we have shown that 1729 is not prime.

Doing the same to 1753 yields $1752=2^{3} .219$ and $5^{219} \equiv 190 \bmod 1753$, and repeated squaring gives $190^{2} \equiv 1040,1040^{2} \equiv 1752 \equiv-1$. Try again with a random value of x, say $x=1372$. We have $1372^{219} \equiv 1563 \bmod 1753$, and $1563^{2} \equiv 1040 \bmod 1753$, which we already know squares to -1 . It's already looking likely that 1753 is prime, but try a few more random values of x to increase our confidence. $285^{219} \equiv 190$, which we've already seen. $1117^{219} \equiv 713$ and $713^{2} \equiv-1$, and so on. (In fact, 1753 is prime.)

2 We choose a value for b and try Pollard's method. If we don't succeed in finding a factor, we increase b and try again. For example, for $b=4$, we get $2^{4!} \equiv$ $1256(\bmod 2573)$, and $\operatorname{gcd}(1255,2573)=1$, so we don't get a factor. Then, we increase to $b=5$. We have $2^{5!} \equiv 280(\bmod 2573)$. We have $\operatorname{gcd}(279,2573)=31$, so 31 divides 2573 . In fact, $2573=31 \cdot 83$.

3 First we need to calculate 46980^{521}. We have $521=2^{9}+2^{3}+1$.

i	0	1	2	3	4
$46980^{2^{i}}(\bmod 137017)$	46980	50564	117893	29003	26646

i	5	6	7	8	9
$46980^{2^{i}}(\bmod 137017)$	124239	90037	50564	117893	29003

So the encryption of $x=46980$ is

$$
y:=x^{521}=29003 \cdot 29003 \cdot 46980 \equiv 41768(\bmod 137017)
$$

Now $d e-1=177660=2^{2} \cdot 44415$. For a choice of a, we calculate modulo 137017 the values $a^{44415}, a^{2 \cdot 44415}, a^{4 \cdot 44415}$ (this last one should be 1), in the hope that some member of this sequence is 1 without the previous member being ± 1 modulo 137017. We find that $2^{2 \cdot 44415} \equiv-1(\bmod 137017)$ and that $3^{44415} \equiv$
$1(\bmod 137017)$, so that $a=2$ and 3 are useless here. Clearly $a=4$ is useless [why?]. Trying $a=5$ works, for $5^{2 \cdot 44415} \equiv 16653(\bmod 137017)$ (and of course $\left.5^{4 \cdot 44415} \equiv 1(\bmod 137017)\right)$. We now obtain the factors of N via the calculations that $\operatorname{gcd}(16652,137017)=181$ and $\operatorname{gcd}(16654,137017)=757$. It is easily checked that $181 \cdot 757=137017$.

4 Since $p-1$ is a factor of $e-1$, we have $x^{e} \equiv x(\bmod p)$ for all x, and $x^{e-1} \equiv$ $1(\bmod p)$ for all x with $p \nmid x$. We thus let $x=2$, and calculate $y:=x^{e-1}(\bmod N)$; we get $y=149382248505$. We find that $\operatorname{gcd}(y-1, N)=505777$. The prime factorisation of N is $N=505777 \cdot 817979$.
[How does one calculate $x^{e-1}(\bmod N)$ when x and e are such large numbers? You have to use the usual method: first write e in the binary form, then use the "squaring" table. You are allowed to use a simple calculator for this problem, but when x and e are not so large, you should not need that. Remember that you are not allowed to use a claculator on the exam.]

5 We have $d e-1=95472=2^{4} \cdot 5967$, and $5967=2^{12}+2^{10}+2^{9}+2^{8}+2^{6}+2^{3}+$ $2^{2}+2+1$. We have $2^{5967} \equiv 1(\bmod 7519)$, which is of no use to us, so let us try $x=3$ in our algorithm. We get:
$3^{5967} \equiv 3604(\bmod 7519), 3^{2 \cdot 5967} \equiv 3503(\bmod 7519)$ and $3^{4 \cdot 5967} \equiv 1(\bmod 7519)$,
and calculating $\operatorname{gcd}(7519,3502)=103$ and $\operatorname{gcd}(7519,3504)=73$, gives us that $7519=73 \cdot 103$. Thus $\lambda(7519)=\operatorname{lcm}(72,102)=72.102 / 6=1224$. Using the Euclidean Algorithm to calculate $83^{-1}(\bmod 1224)$ gives $d^{\prime}=59$.

