

MTH6115

Cryptography

Solutions 9

1 By Question 7 we have $\lambda(256)|64$. To prove the equality, we find an odd number a such that $a^{32} \not\equiv 1 \pmod{256}$. The following calculation shows that a = 5 has this property:

 $5^1 \equiv 5, \quad 5^2 \equiv 25, \quad 5^4 \equiv 625 \equiv 113, \quad 5^8 \equiv 113^2 \equiv 12769 \equiv -31, \\ 5^{16} \equiv (-31)^2 \equiv 961 \equiv -63, \quad 5^{32} \equiv (-63)^2 \equiv 3969 \equiv -127 \not\equiv 1.$

2 $\lambda(1000000) = \operatorname{lcm}(\lambda(2^6), \lambda(5^6)) = \operatorname{lcm}(2^4, 4 \cdot 5^5) = 2^4 \times 5^5 = 50000$. The other values are given below.

Some sample calculations are $\lambda(120) = \text{lcm}(\lambda(2^3), \lambda(3), \lambda(5)) = \text{lcm}(2, 2, 4) = 4$ and $\lambda(126) = \text{lcm}(\lambda(2), \lambda(3^2), \lambda(7)) = \text{lcm}(1, 6, 6) = 6.$

3 We have $\lambda(130) = 12$. So we have to solve $7d \equiv 1 \pmod{12}$. The answer is $d \equiv 7 \pmod{12}$, i.e. T_7 is its own inverse mod 130.

4 We have N = pq = 7571 and $\phi(N) = (p-1)(q-1) = pq - p - q + 1 = 7392$. Therefore p + q = 7571 - 7392 + 1 = 180. So p and q are solutions of the equation

$$x^2 - 180x + 7571 = 0$$

Solving this we find p, q = 67, 113. It is easy to check that $67 \cdot 113 = 7571$.

5 We have N = 713057 = pq where $2 primes, and <math>\lambda(N) = 88920 = lcm(p-1,q-1)$. The residue of division of N = 713057 by $2 \cdot \lambda(N) = 177840$ is r = 1697. So p and q are solutions of the equation

$$x^2 - 1698x + 713057 = 0$$

Solving this we find p, q = 761, 937. It is easy to check that $761 \cdot 937 = 713057$.

6 We have $de - 1 = 132 = 4 \cdot 33$. Apply the algorithm with x = 2. We have gcd(2, 299) = 1. Let $y = 70 \equiv 2^{33} \pmod{299}$. (Note that $2^{33} \pmod{299}$) is easy to calculate because $33 = 2^5 + 1$.) Then $z = 70^2 \equiv 116 \pmod{229}$ has the property that $z^2 \equiv 1 \pmod{299}$. So 299 divides $116^2 - 1 = 115 \cdot 117$. From this we find the factors of 299 to be gcd(115, 299) = 23 and gcd(117, 299) = 13. So, $299 = 13 \cdot 23$.

7 a) Let $m = q\lambda(N) + r$, where $0 \le r < \lambda(N)$ is the residue of the division of m by $\lambda(N)$. For every a coprime to N we have

$$a^r \equiv a^{m-q\lambda(N)} \equiv (a^m)(a^{\lambda(N)})^{-q} \equiv 1 \cdot 1 \equiv 1 \pmod{N}.$$

Since $\lambda(N)$ is the smallest positive integer with this property, we must have r = 0, that is, $\lambda(N)|m$.

b) First we prove the case n = 3. We have $a^2 - 1 = (a - 1)(a + 1)$. Both factors are even, so $a^2 - 1$ is divisible by 4. In fact, one of a - 1 and a + 1 is divisible by 4 (why?), so $a^2 - 1$ is divisible by 8, as desired. Now suppose $a^{2^{n-2}} - 1$ is divisible by 2ⁿ. We have

$$a^{2^{n-1}} - 1 = (a^{2^{n-2}} - 1)(a^{2^{n-2}} + 1).$$

By the induction hypothesis, the first factor is divisible by 2^n . The second factor is even. Therefore, $a^{2^{n-1}} - 1$ is divisible by 2^{n+1} . This complete the induction step.

It follows from Part (a) that $\lambda(n)|2^{n-2}$.