University of London

MTH6115

Cryptography

Solutions 9

1 By Question 7 we have $\lambda(256) \mid 64$. To prove the equality, we find an odd number a such that $a^{32} \not \equiv 1 \quad(\bmod 256)$. The following calculation shows that $a=5$ has this property:

$$
\begin{gathered}
5^{1} \equiv 5, \quad 5^{2} \equiv 25, \quad 5^{4} \equiv 625 \equiv 113, \quad 5^{8} \equiv 113^{2} \equiv 12769 \equiv-31 \\
5^{16} \equiv(-31)^{2} \equiv 961 \equiv-63, \quad 5^{32} \equiv(-63)^{2} \equiv 3969 \equiv-127 \not \equiv 1
\end{gathered}
$$

$2 \lambda(1000000)=\operatorname{lcm}\left(\lambda\left(2^{6}\right), \lambda\left(5^{6}\right)\right)=\operatorname{lcm}\left(2^{4}, 4 \cdot 5^{5}\right)=2^{4} \times 5^{5}=50000$. The other values are given below.

$$
\begin{array}{r|ccccccccccc}
n & 120 & 121 & 122 & 123 & 124 & 125 & 126 & 127 & 128 & 129 & 130 \\
\hline \lambda(n) & 4 & 110 & 60 & 40 & 30 & 100 & 6 & 126 & 32 & 42 & 12
\end{array}
$$

Some sample calculations are $\lambda(120)=\operatorname{lcm}\left(\lambda\left(2^{3}\right), \lambda(3), \lambda(5)\right)=\operatorname{lcm}(2,2,4)=4$ amd $\lambda(126)=\operatorname{lcm}\left(\lambda(2), \lambda\left(3^{2}\right), \lambda(7)\right)=\operatorname{lcm}(1,6,6)=6$.

3 We have $\lambda(130)=12$. So we have to solve $7 d \equiv 1 \quad(\bmod 12)$. The answer is $d \equiv 7(\bmod 12)$, i.e. T_{7} is its own inverse $\bmod 130$.

4 We have $N=p q=7571$ and $\phi(N)=(p-1)(q-1)=p q-p-q+1=7392$. Therefore $p+q=7571-7392+1=180$. So p and q are solutions of the equation

$$
x^{2}-180 x+7571=0
$$

Solving this we find $p, q=67,113$. It is easy to check that $67 \cdot 113=7571$.
5 We have $N=713057=p q$ where $2<p<q$ primes, and $\lambda(N)=88920=$ $\operatorname{lcm}(p-1, q-1)$. The residue of division of $N=713057$ by $2 \cdot \lambda(N)=177840$ is $r=1697$. So p and q are solutions of the equation

$$
x^{2}-1698 x+713057=0
$$

Solving this we find $p, q=761,937$. It is easy to check that $761 \cdot 937=713057$.

6 We have $d e-1=132=4 \cdot 33$. Apply the algorithm with $x=2$. We have $\operatorname{gcd}(2,299)=1$. Let $y=70 \equiv 2^{33}(\bmod 299)$. (Note that $2^{33}(\bmod 299)$ is easy to calculate because $33=2^{5}+1$.) Then $z=70^{2} \equiv 116(\bmod 229)$ has the property that $z^{2} \equiv 1(\bmod 299)$. So 299 divides $116^{2}-1=115 \cdot 117$. From this we find the factors of 299 to be $\operatorname{gcd}(115,299)=23$ and $\operatorname{gcd}(117,299)=13$. So, $299=13 \cdot 23$.

7 a) Let $m=q \lambda(N)+r$, where $0 \leqslant r<\lambda(N)$ is the residue of the division of m by $\lambda(N)$. For every a coprime to N we have

$$
a^{r} \equiv a^{m-q \lambda(N)} \equiv\left(a^{m}\right)\left(a^{\lambda(N)}\right)^{-q} \equiv 1 \cdot 1 \equiv 1 \quad(\bmod N) .
$$

Since $\lambda(N)$ is the smallest positive integer with this property, we must have $r=0$, that is, $\lambda(N) \mid m$.
b) First we prove the case $n=3$. We have $a^{2}-1=(a-1)(a+1)$. Both factors are even, so $a^{2}-1$ is divisible by 4 . In fact, one of $a-1$ and $a+1$ is divisible by 4 (why?), so $a^{2}-1$ is divisible by 8 , as desired. Now suppose $a^{2^{n-2}}-1$ is divisible by 2^{n}. We have

$$
a^{2^{n-1}}-1=\left(a^{2^{n-2}}-1\right)\left(a^{2^{n-2}}+1\right) .
$$

By the induction hypothesis, the first factor is divisible by 2^{n}. The second factor is even. Therefore, $a^{2^{n-1}}-1$ is divisible by 2^{n+1}. This complete the induction step.
It follows from Part (a) that $\lambda(n) \mid 2^{n-2}$.

