
MTH6115 Cryptography

Solutions 8

1 Consider the numbers { gk | 0 6 k < p − 1 }. They are pairwise distinct mod
p, because if gk ≡ gl (mod p) for some 0 6 k < l < p − 1, then we would have
gl−k ≡ 1 (mod p), contradicting the fact that p is a primitive root. So, the set
{ gk | 0 6 k < p − 1 } contains p − 1 pairwise distinct nonzero residue classes
mod p. Since we have precisely p− 1 nonzero residue classes mod p, the above set
should represent all of them.

2 First suppose that l is coprime to ϕ(n). Then, there exist k such that kl ≡ 1
(mod n). Now, if am ≡ 1 (mod n) then, by Lemma A, (al)m ≡ 1 (mod n). Con-
versely, (al)m ≡ 1 (mod n) implies, again by Lemma A, that (akl)m = ((al)m)k ≡
1 (mod n). It follows that the smallest such m for a coincides with the smallest
such m for al, hence a and al have the same order mod n.

To prove the reverse implication, let gcd(l, ϕ(n)) = d > 1. Let m = ordn(a).
Then, (al)m/d = (am)l/d ≡ 1 (mod n), by Lemma A. So, ordn(al) ≤ m/d. (Exer-
cise: show that in fact ordn(al) = m/d.)

3 a) By Problem 1 every residue class mod p is of the form gk for some 0 6
k < p− 1. By Problem 2, when k is coprime to p− 1 the order of gk is equal
to the order of g, so gk is a primitive root. If k is not coprime to p− 1, say
gcd(k, p− 1) = d > 1, then (gk)

p−1
d ≡ (gp−1)

k
d ≡ 1 (mod p), so the order of

gk is at most p−1
d

. Hence, gk is not a primitive root. So, the set of primitive
roots in Zp is precisely { gk | 0 6 k < p− 1, gcd(k, p− 1) = 1 }.

b) We have seen in the supplementary notes that 2 is a primitive root mod 19.
The numbers 0 < k < 19 − 1 coprime to 18 are 1, 5, 7, 11, 13, 17. So, the
primitive roots mod 19 are

{2, 25 ≡ 13, 27 ≡ 14, 211 ≡ 15, 213 ≡ 3, 217 ≡ 10 (mod 19)},

that is
{2, 3, 10, 13, 14, 15}.
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4 a) First we find the order of 2 mod 41. The order of any number mod 41
divides 40, so it is one of the following numbers: 1, 2, 4, 5, 8, 10, 20, 40. The
first three clearly don’t work. We have 25 ≡ 32 ≡ −9 (mod 41) which
doesn’t work either, but 210 ≡ (−9)2 ≡ 81 ≡ −1 (mod 41) is pretty close.
In fact, this implies that the order of 2 mod 41 is 20. We immediately deduce
that the order of 4 = 22 mod 41 is 10 and the order of 8 = 23 mod 41 is 20
(because gcd(3, 40) = 1).

Let k be the order of 7 mod 41. Note that 72 ≡ 8 (mod 41). Since 8k ≡
72k ≡ 1 (mod 41), and since the order of 8 is 20, we must have 20|k. If
k = 20, we would have 810 = 720 ≡ 1 (mod 41) which is not possible.
Therefore, the order of 7 mod 41 is 40. That is, 7 is a primitive root mod 41.

b) The order of any number mod 23 divides 22, so it is one of the following
numbers: 1, 2, 11, 22. The order of 5 is not 1, and is not 2 either because
52 = 25 ≡ 2 (mod 23). We try 11. We have 511 ≡ (5)(52)5 ≡ (5)(2)5 ≡
(5)(32) ≡ (5)(9) ≡ −1. So the order of 5 is 22, that is, 5 is a primitive root
mod 23.

To find the order of 18, note that 18 ≡ −5 (mod 23). So we can use the
above calculations, being careful about the signs. We see that 11 works, that
is, the order of 18 mod 23 is 11.

5 (a) We have 107− 1 = 106 = 2 · 53. Clearly, 22 = 4 6≡ 1 (mod 107). We now
calculate 253 (mod 107) as follows:

27 = 128 ≡ 21, 214 ≡ 212 ≡ 13, 228 ≡ 132 ≡ 62 (mod 107)
227 ≡ 31, 254 ≡ 105 ≡ −2 (mod 107)

Dividing by 2, we find that 253 ≡ −1 (mod 107). Hence, 2 is a primitive root
modulo 107.

(b) We saw above that 27 ≡ 21 (mod 107).

214 ≡ 13 (mod 107), so 215 ≡ 26 ≡ −81 (mod 107). So 81 ≡ 253 · 215 =
268 (mod 107). (Can we conclude that 3 ≡ 268/4 ≡ 217 (mod 107)?)

Notice that 4 · 27 = 108 ≡ 1 (mod 107), so 27 ≡ 2−2 ≡ 2104 (mod 107). (We
used Fermat’s theorem.)

By Fermat, 27 ≡ 2104 ≡ 2210 (mod 106). So 3 ≡ 2210/3 ≡ 270 (mod 107).
(Why can we do this?)

We know 21 and 3, so we calculate 7 ≡ 27−70 ≡ 2−63 ≡ 243 (mod 107).

14 = 2 · 7 ≡ 21 · 243 = 244 (mod 107).
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(c) By part (b), we know that 14 ≡ 244 (mod 107), so x = 211 ≡ 15 (mod 107)
is a solution. The other solution is x = −15 ≡ 92 (mod 107).

6 (a) We have 131− 1 = 130 = 2 · 5 · 13. In order to show 2 is a primitive root
modulo 131 we must therefore calculate 2130, 265 = 2130/2, 226 = 2130/5 and
210 = 2130/13 modulo 131, where the first of these is required to be congruent
to 1 modulo 131, and the others must not be congruent to 1 modulo 131.
Calculating modulo 131 we have:

23 = 8, 25 = 32, 210 = 322 = 1024 ≡ 107 ≡ −24,
213 ≡ 8 · (−24) = −192 ≡ −61 6≡ 1, 226 ≡ 612 = 3721 ≡ 53 6≡ 1,

252 = (226)2 ≡ 532 = 2809 ≡ 58, 265 ≡ (−61) · 58 = −3538 ≡ −1 6≡ 1

Thus 2130 ≡ (−1)2 = 1 (mod 131), which together with the above proves
that 2 is a primitive root modulo 131.

(b) There are several useful tricks to find a without the need to do much clacu-
lations. You will see a few of these trick in the following. You have seen a
few in the previous problem as well.

First note that, since 2 is a primitive root, we have 265 ≡ −1 (mod 131), as
we saw above.

123 ≡ −8 ≡ 265 · 23 ≡ 268 (mod 131).

101 ≡ 232 = 4 · 58 ≡ 22 · 252 ≡ 254 (mod 131).

27 ≡ 128 ≡ −3 (mod 131), so 3 ≡ 265 · 27 ≡ 272 (mod 131).

81 = 34 ≡ (272)4 ≡ 228 (mod 131).

3 · 41 = 123 ≡ 268, so 41 ≡ 268−72 ≡ 2−4 ≡ 2130−4 ≡ 2126 (mod 131).

For a = 15, note that 9 · 15 = 135 ≡ 4 (mod 131). Since 9 = 32 ≡ 22·72 =
2144 ≡ 214 (mod 131), we have 15 ≡ 22−14 ≡ 2−12 ≡ 2118 (mod 131).

(c) We have λ(10000) = lcm{λ(24), λ(54)} = lcm{4, 53(4)} = 500, so 3500 ≡ 1
(mod 10000). Therefore,

31005 ≡ (31000)(35) ≡ (1)(243) (mod 10000).

So, the last four digits are 0243.
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