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1 Consider the numbers { ¢ | 0 < k < p—1 }. They are pairwise distinct mod
p, because if g* = ¢! (mod p) for some 0 < k < | < p — 1, then we would have
g% =1 (mod p), contradicting the fact that p is a primitive root. So, the set
{¢"|0< k< p—1} contains p — 1 pairwise distinct nonzero residue classes
mod p. Since we have precisely p — 1 nonzero residue classes mod p, the above set
should represent all of them.

2 First suppose that [ is coprime to ¢(n). Then, there exist k such that kl = 1
(mod n). Now, ifa™ =1 (mod n) then, by Lemma A, (a')™ =1 (mod n). Con-
versely, (¢\)™ =1 (mod n) implies, again by Lemma A, that (a*')™ = ((a')™)* =
1 (mod n). It follows that the smallest such m for a coincides with the smallest
such m for @', hence a and o' have the same order mod n.

To prove the reverse implication, let ged(l, o(n)) = d > 1. Let m = ord,(a).
Then, (a")™¢ = (a™)¥? =1 (mod n), by Lemma A. So, ord,(a') < m/d. (Exer-
cise: show that in fact ord,(a') = m/d.)

3 a) By Problem 1 every residue class mod p is of the form g* for some 0 <
k < p—1. By Problem 2, when k is coprime to p — 1 the order of ¢* is equal
to the order of g, so ¢* is a primitive root. If k is not coprime to p — 1, say
ged(k,p—1) =d > 1, then (gk)p%1 =(¢g» i =1 (mod p), so the order of
g" is at most p%l. Hence, g* is not a primitive root. So, the set of primitive
roots in Z, is precisely { ¢* | 0 < k<p—1, ged(k,p—1)=1}.

b) We have seen in the supplementary notes that 2 is a primitive root mod 19.
The numbers 0 < k < 19 — 1 coprime to 18 are 1,5,7,11,13,17. So, the
primitive roots mod 19 are

{2, 2°=13, 2" =14, 2'' =15, 2"¥ =3, 2!" = 10 (mod 19)},

that is
{2,3,10,13,14, 15}.



4

a) First we find the order of 2 mod 41. The order of any number mod 41
divides 40, so it is one of the following numbers: 1,2,4,5,8,10,20,40. The
first three clearly don’t work. We have 2° = 32 = —9 (mod 41) which
doesn’t work either, but 21 = (=9)2 =81 = —1 (mod 41) is pretty close.
In fact, this implies that the order of 2 mod 41 is 20. We immediately deduce
that the order of 4 = 22 mod 41 is 10 and the order of 8 = 23 mod 41 is 20
(because ged(3,40) = 1).

Let k be the order of 7 mod 41. Note that 7> = 8 (mod 41). Since 8" =
7?* =1 (mod 41), and since the order of 8 is 20, we must have 20|k. If
k = 20, we would have 8% = 72 = 1 (mod 41) which is not possible.
Therefore, the order of 7 mod 41 is 40. That is, 7 is a primitive root mod 41.

The order of any number mod 23 divides 22, so it is one of the following
numbers: 1,2,11,22. The order of 5 is not 1, and is not 2 either because
52 =25 =2 (mod 23). We try 11. We have 5" = (5)(5%)° = (5)(2)° =
(5)(32) = (5)(9) = —1. So the order of 5 is 22, that is, 5 is a primitive root
mod 23.

To find the order of 18, note that 18 = —5 (mod 23). So we can use the
above calculations, being careful about the signs. We see that 11 works, that
is, the order of 18 mod 23 is 11.

5 (a) We have 107 —1 = 106 = 2 - 53. Clearly, 2> = 4 # 1 (mod 107). We now

calculate 2°3 (mod 107) as follows:

2T =128=21, 2M=212=13, 2% =132 =62 (mod 107)
22T =31, 2% =105= -2 (mod 107)

Dividing by 2, we find that 2°3 = —1 (mod 107). Hence, 2 is a primitive root
modulo 107.

We saw above that 27 = 21 (mod 107).

214 = 13 (mod 107), so 2! = 26 = —81 (mod 107). So 81 = 2% .2 =
268 (mod 107). (Can we conclude that 3 = 268/ = 217 (mod 107)?)

Notice that 4 - 27 = 108 = 1 (mod 107), so 27 = 272 = 2! (mod 107). (We
used Fermat’s theorem.)

By Fermat, 27 = 2! = 22 (mod 106). So 3 = 22193 = 270 (mod 107).
(Why can we do this?)

We know 21 and 3, so we calculate 7 = 27770 = 2763 = 213 (mod 107).

14=2.7=2".2%8 = 2% (mod 107).
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(c)

By part (b), we know that 14 = 2* (mod 107), so x = 2! = 15 (mod 107)
is a solution. The other solution is x = —15 = 92 (mod 107).

6 (a) We have 131 —1 =130 =2-5-13. In order to show 2 is a primitive root

modulo 131 we must therefore calculate 2130, 265 = 2130/2 926 — 9130/5 45

210 = 2130/13 yypdulo 131, where the first of these is required to be congruent
to 1 modulo 131, and the others must not be congruent to 1 modulo 131.
Calculating modulo 131 we have:

23 =8, 25=32 210=322=1024=107=—24,
2B =8.(—24)=—192=—61%£1, 2%=612=3721=53# 1,
252 — (226)2 = 532 = 2809 = 58, 2% = (—61)-58 = —3538= —1 £ 1

Thus 2% = (—=1)2 = 1 (mod 131), which together with the above proves
that 2 is a primitive root modulo 131.

There are several useful tricks to find a without the need to do much clacu-
lations. You will see a few of these trick in the following. You have seen a
few in the previous problem as well.

First note that, since 2 is a primitive root, we have 25> = —1 (mod 131), as
we saw above.

123 = —8 = 2%5. 23 = 2% (mod 131).

101 =232 = 4-58 = 22- 252 = 25 (mod 131).

27 =128 = —3 (mod 131), so 3 = 2% . 27 = 2™ (mod 131).

81 = 3* = (2%)* = 2%® (mod 131).

3.41 = 123 = 255, 50 41 = 26572 = 94 = 21304 = 2126 (104 131).

For a = 15, note that 9 - 15 = 135 = 4 (mod 131). Since 9 = 32 = 227 =
214 = 21 (mod 131), we have 15 = 22714 = 2712 = 2118 (;mod 131).

We have A(10000) = lem{A(2%), A\(5*)} = lem{4,5%(4)} = 500, so 35 =1
(mod 10000). Therefore,

31005 = (31000)(3%) = (1)(243) (mod 10000).

So, the last four digits are 0243.



