University of London

MTH6115

Cryptography

Solutions 8

1 Consider the numbers $\left\{g^{k} \mid 0 \leqslant k<p-1\right\}$. They are pairwise distinct mod p, because if $g^{k} \equiv g^{l} \quad(\bmod p)$ for some $0 \leqslant k<l<p-1$, then we would have $g^{l-k} \equiv 1 \quad(\bmod p)$, contradicting the fact that p is a primitive root. So, the set $\left\{g^{k} \mid 0 \leqslant k<p-1\right\}$ contains $p-1$ pairwise distinct nonzero residue classes $\bmod p$. Since we have precisely $p-1$ nonzero residue classes $\bmod p$, the above set should represent all of them.

2 First suppose that l is coprime to $\varphi(n)$. Then, there exist k such that $k l \equiv 1$ $(\bmod n)$. Now, if $a^{m} \equiv 1 \quad(\bmod n)$ then, by Lemma A, $\left(a^{l}\right)^{m} \equiv 1 \quad(\bmod n)$. Conversely, $\left(a^{l}\right)^{m} \equiv 1 \quad(\bmod n)$ implies, again by Lemma A, that $\left(a^{k l}\right)^{m}=\left(\left(a^{l}\right)^{m}\right)^{k} \equiv$ $1(\bmod n)$. It follows that the smallest such m for a coincides with the smallest such m for a^{l}, hence a and a^{l} have the same order mod n.

To prove the reverse implication, let $\operatorname{gcd}(l, \varphi(n))=d>1$. Let $m=\operatorname{ord}_{n}(a)$. Then, $\left(a^{l}\right)^{m / d}=\left(a^{m}\right)^{l / d} \equiv 1(\bmod n)$, by Lemma A. So, $\operatorname{ord}_{n}\left(a^{l}\right) \leq m / d$. (Exercise: show that in fact $\operatorname{ord}_{n}\left(a^{l}\right)=m / d$.)

3 a) By Problem 1 every residue class mod p is of the form g^{k} for some $0 \leqslant$ $k<p-1$. By Problem 2, when k is coprime to $p-1$ the order of g^{k} is equal to the order of g, so g^{k} is a primitive root. If k is not coprime to $p-1$, say $\operatorname{gcd}(k, p-1)=d>1$, then $\left(g^{k}\right)^{\frac{p-1}{d}} \equiv\left(g^{p-1}\right)^{\frac{k}{d}} \equiv 1 \quad(\bmod p)$, so the order of g^{k} is at most $\frac{p-1}{d}$. Hence, g^{k} is not a primitive root. So, the set of primitive roots in \mathbb{Z}_{p} is precisely $\left\{g^{k} \mid 0 \leqslant k<p-1, \operatorname{gcd}(k, p-1)=1\right\}$.
b) We have seen in the supplementary notes that 2 is a primitive root mod 19 . The numbers $0<k<19-1$ coprime to 18 are $1,5,7,11,13,17$. So, the primitive roots mod 19 are

$$
\left\{2,2^{5} \equiv 13,2^{7} \equiv 14,2^{11} \equiv 15,2^{13} \equiv 3,2^{17} \equiv 10(\bmod 19)\right\}
$$

that is

$$
\{2,3,10,13,14,15\} .
$$

4 a) First we find the order of $2 \bmod 41$. The order of any number mod 41 divides 40 , so it is one of the following numbers: $1,2,4,5,8,10,20,40$. The first three clearly don't work. We have $2^{5} \equiv 32 \equiv-9 \quad(\bmod 41)$ which doesn't work either, but $2^{10} \equiv(-9)^{2} \equiv 81 \equiv-1 \quad(\bmod 41)$ is pretty close. In fact, this implies that the order of $2 \bmod 41$ is 20 . We immediately deduce that the order of $4=2^{2} \bmod 41$ is 10 and the order of $8=2^{3} \bmod 41$ is 20 (because $\operatorname{gcd}(3,40)=1$).
Let k be the order of $7 \bmod 41$. Note that $7^{2} \equiv 8(\bmod 41)$. Since $8^{k} \equiv$ $7^{2 k} \equiv 1(\bmod 41)$, and since the order of 8 is 20 , we must have $20 \mid k$. If $k=20$, we would have $8^{10}=7^{20} \equiv 1(\bmod 41)$ which is not possible. Therefore, the order of $7 \bmod 41$ is 40 . That is, 7 is a primitive root $\bmod 41$.
b) The order of any number mod 23 divides 22 , so it is one of the following numbers: $1,2,11,22$. The order of 5 is not 1 , and is not 2 either because $5^{2}=25 \equiv 2 \quad(\bmod 23)$. We try 11 . We have $5^{11} \equiv(5)\left(5^{2}\right)^{5} \equiv(5)(2)^{5} \equiv$ $(5)(32) \equiv(5)(9) \equiv-1$. So the order of 5 is 22 , that is, 5 is a primitive root $\bmod 23$.

To find the order of 18 , note that $18 \equiv-5(\bmod 23)$. So we can use the above calculations, being careful about the signs. We see that 11 works, that is, the order of $18 \bmod 23$ is 11 .

5 (a) We have $107-1=106=2 \cdot 53$. Clearly, $2^{2}=4 \not \equiv 1(\bmod 107)$. We now calculate $2^{53}(\bmod 107)$ as follows:

$$
\begin{gathered}
2^{7}=128 \equiv 21, \quad 2^{14} \equiv 21^{2} \equiv 13, \quad 2^{28} \equiv 13^{2} \equiv 62(\bmod 107) \\
2^{27} \equiv 31, \quad 2^{54} \equiv 105 \equiv-2(\bmod 107)
\end{gathered}
$$

Dividing by 2 , we find that $2^{53} \equiv-1(\bmod 107)$. Hence, 2 is a primitive root modulo 107.
(b) We saw above that $2^{7} \equiv 21(\bmod 107)$.
$2^{14} \equiv 13(\bmod 107)$, so $2^{15} \equiv 26 \equiv-81(\bmod 107)$. So $81 \equiv 2^{53} \cdot 2^{15}=$ $2^{68}(\bmod 107)$. (Can we conclude that $3 \equiv 2^{68 / 4} \equiv 2^{17}(\bmod 107)$?)

Notice that $4 \cdot 27=108 \equiv 1(\bmod 107)$, so $27 \equiv 2^{-2} \equiv 2^{104}(\bmod 107)$. (We used Fermat's theorem.)

By Fermat, $27 \equiv 2^{104} \equiv 2^{210}(\bmod 106)$. So $3 \equiv 2^{210 / 3} \equiv 2^{70}(\bmod 107)$. (Why can we do this?)

We know 21 and 3 , so we calculate $7 \equiv 2^{7-70} \equiv 2^{-63} \equiv 2^{43}(\bmod 107)$.
$14=2 \cdot 7 \equiv 2^{1} \cdot 2^{43}=2^{44}(\bmod 107)$.
(c) By part (b), we know that $14 \equiv 2^{44}(\bmod 107)$, so $x=2^{11} \equiv 15(\bmod 107)$ is a solution. The other solution is $x=-15 \equiv 92(\bmod 107)$.

6 (a) We have $131-1=130=2 \cdot 5 \cdot 13$. In order to show 2 is a primitive root modulo 131 we must therefore calculate $2^{130}, 2^{65}=2^{130 / 2}, 2^{26}=2^{130 / 5}$ and $2^{10}=2^{130 / 13}$ modulo 131 , where the first of these is required to be congruent to 1 modulo 131, and the others must not be congruent to 1 modulo 131 . Calculating modulo 131 we have:

$$
\begin{gathered}
2^{3}=8, \quad 2^{5}=32, \quad 2^{10}=32^{2}=1024 \equiv 107 \equiv-24, \\
2^{13} \equiv 8 \cdot(-24)=-192 \equiv-61 \not \equiv 1, \quad 2^{26} \equiv 61^{2}=3721 \equiv 53 \not \equiv 1, \\
2^{52}=\left(2^{26}\right)^{2} \equiv 53^{2}=2809 \equiv 58, \quad 2^{65} \equiv(-61) \cdot 58=-3538 \equiv-1 \not \equiv 1
\end{gathered}
$$

Thus $2^{130} \equiv(-1)^{2}=1(\bmod 131)$, which together with the above proves that 2 is a primitive root modulo 131 .
(b) There are several useful tricks to find a without the need to do much claculations. You will see a few of these trick in the following. You have seen a few in the previous problem as well.
First note that, since 2 is a primitive root, we have $2^{65} \equiv-1(\bmod 131)$, as we saw above.
$123 \equiv-8 \equiv 2^{65} \cdot 2^{3} \equiv 2^{68}(\bmod 131)$.
$101 \equiv 232=4 \cdot 58 \equiv 2^{2} \cdot 2^{52} \equiv 2^{54}(\bmod 131)$.
$2^{7} \equiv 128 \equiv-3(\bmod 131)$, so $3 \equiv 2^{65} \cdot 2^{7} \equiv 2^{72}(\bmod 131)$.
$81=3^{4} \equiv\left(2^{72}\right)^{4} \equiv 2^{28}(\bmod 131)$.
$3 \cdot 41=123 \equiv 2^{68}$, so $41 \equiv 2^{68-72} \equiv 2^{-4} \equiv 2^{130-4} \equiv 2^{126}(\bmod 131)$.
For $a=15$, note that $9 \cdot 15=135 \equiv 4(\bmod 131)$. Since $9=3^{2} \equiv 2^{2 \cdot 72}=$ $2^{144} \equiv 2^{14}(\bmod 131)$, we have $15 \equiv 2^{2-14} \equiv 2^{-12} \equiv 2^{118}(\bmod 131)$.
(c) We have $\lambda(10000)=\operatorname{lcm}\left\{\lambda\left(2^{4}\right), \lambda\left(5^{4}\right)\right\}=\operatorname{lcm}\left\{4,5^{3}(4)\right\}=500$, so $3^{500} \equiv 1$ (mod 10000). Therefore,

$$
3^{1005} \equiv\left(3^{1000}\right)\left(3^{5}\right) \equiv(1)(243) \quad(\bmod 10000)
$$

So, the last four digits are 0243 .

