University of London
MTH6115

Cryptography

Solutions 5

1 The Vigenère square is not self-adjugate unless $n=2$. This is because for $n>2$ it is not true that for every i and $j, i-j \equiv i+j(\bmod n)$. The Vigenère square is self-transpose because $j+i \equiv i+j(\bmod n)$. For the last part of the problem see Exercise Sheet 2, Problem 8(iii).

2 We have to show that for every $a, b \in \mathbb{Z}_{n}$, we have $a \oplus b=a \ominus b$. By definition $a \ominus b=c$, where c is the unique element in \mathbb{Z}_{n} such that $c \oplus b=a$, that is $b-c=a$ in \mathbb{Z}_{n}. Solving this for c, we find that $c=b-a=a \oplus b$. So $a \ominus b=a \oplus b$.

3 a) (Optional.) The corresponding orthogonal array is

$$
\left(\begin{array}{llllllllllllllll}
a & a & a & a & b & b & b & b & c & c & c & c & d & d & d & d \\
a & b & c & d & a & b & c & d & a & b & c & d & a & b & c & d \\
b & c & a & d & c & d & b & a & d & a & c & b & a & b & d & c
\end{array}\right)
$$

b) The adjugate is

d	c	a	b
a	d	b	c
b	a	c	d
c	b	d	a

The transpose is

b	c	d	a
c	d	a	b
a	b	c	d
d	a	b	c

c) It is the same as the adjugate; see part (b).

4 Let us do the final two questions together. We note that Shannon's Theorem does not apply since the substitution table is not a Latin square. For all possible strings P_{0}, we must calculate $\mathrm{P}\left(p=P_{0} \mid z=23030\right)$. Firstly we calculate

$$
\mathrm{P}\left(z=23030 \mid p=P_{0}\right)=\frac{1}{4^{5}} \times \#\left\{\text { keys } K_{0} \text { such that } P_{0} \oplus K_{0}=23030\right\}
$$

The ones we shall need are:

$$
\begin{gathered}
\mathrm{P}(z=23030 \mid p=21312)=\frac{12}{1024} ; \quad \mathrm{P}(z=23030 \mid p=20310)=0 ; \\
\mathrm{P}(z=23030 \mid p=30312)=\frac{36}{1024} .
\end{gathered}
$$

(The numerators of these are calculated as $1 \cdot 2 \cdot 1 \cdot 2 \cdot 3,1 \cdot 2 \cdot 1 \cdot 2 \cdot 0$ and $3 \cdot 2 \cdot 1 \cdot 2 \cdot 3$ respectively.) The Theorem of Total Probability now gives:

$$
\mathrm{P}(z=23030)=\sum_{P_{0}} \mathrm{P}\left(z=23030 \mid p=P_{0}\right) \cdot \mathrm{P}\left(p=P_{0}\right) .
$$

We thus get $\mathrm{P}(z=23030)=\frac{12}{1024} \cdot a+0 \cdot b+\frac{36}{1024} \cdot c=\frac{12}{1024}(a+3 c)$, where we have excluded from our sum those P_{0} for which $\mathrm{P}\left(p=P_{0}\right)=0$. (Of course, in lowest terms we have $\frac{12}{1024}=\frac{3}{256}$ and $\frac{36}{1024}=\frac{9}{256}$, but for what we to do here, and problems like it, it is probably easier not to put the fractions in their lowest terms.) Finally, we apply Bayes's Theorem, which here states that

$$
\mathrm{P}\left(p=P_{0} \mid z=23030\right)=\frac{\mathrm{P}\left(z=23030 \mid p=P_{0}\right) \cdot \mathrm{P}\left(p=P_{0}\right)}{\mathrm{P}(z=23030)},
$$

at least when $\mathrm{P}(z=23030) \neq 0$. We thus find new probabilities

$$
\begin{aligned}
& \mathrm{P}(p=21312 \mid z=23030)=\frac{a}{a+3 c}, \\
& \mathrm{P}(p=20310 \mid z=23030)=0, \\
& \mathrm{P}(p=30312 \mid z=23030)=\frac{3 c}{a+3 c} .
\end{aligned}
$$

Of course, we have $\mathrm{P}\left(p=P_{0} \mid z=23030\right)=0$ for $P_{0} \neq 21312$, 20310 or 30312. Specialising to $(a, b, c)=\left(\frac{1}{5}, \frac{3}{10}, \frac{1}{2}\right)$ gives the new probabilities for Question 4 as being $\frac{2}{17}, 0$ and $\frac{15}{17}$ respectively.

Note that in the above we need $a+3 c \neq 0$, which will be the case unless $b=1$ and $a=c=0$. In any other case, the new probabilities lie between 0 and 1 (inclusive) and sum to 1 . However if $(a, b, c)=(0,1,0)$ then we get $\mathrm{P}(z=23030)=0$, which means that the ciphertext cannot be 23030 (unless one or more of the P_{0} with $\mathrm{P}\left(p=P_{0}\right)=0$ can actually occur), so some sort of contradiction has (almost certainly) arisen here. In some contexts, events with probability 0 can happen. For example, if one tosses a fair coin countably infinitely often it can come up heads every time, but this event has probability 0 .

5 See previous question.

