
MTH6115 Cryptography

Solutions 3

1 I use the following Latin square

a b c d
a b c a d
b c d b a
c d a c b
d a b d c

1) We have a⊕ b = c, (a⊕ d) ⊕ c = d , a	 c = a.

2) The above Latin square gives the following ciphertext: a bca bba cbdb cbc.

3) Answer: b ccc ddc bccb dbc.

2 I will denote the (i, j)-entry of the Latin square by Lij.

(i) The condition here is that if ai ⊕ aj = ak then ak ⊕ aj = ai. (That is, if
Lij = ak then Lkj = ai.) So the permutation corresponding to column aj
swaps ai and ak, and so squares to the identity (that is, has order 1 or 2).
(We do allow ai = ak in the above.)

(ii) The condition here is Lji = Lij for all i and j.

(iii) A combination of the conditions in Parts (i) and (ii).

(iv) Already each column contains each symbol ai exactly once. The symmetry
of condition (ii), and thus (iii), now forces each row to contain each symbol
exactly once, and so we have a Latin square.

(v) Such substitution tables exist for all n. One example is to take a substitution
table on the integers modulo n in which i⊕ j := −(i+ j) (mod n). A similar
construction works in any abelian group of order n.

(vi) For n = 1, 2, 3, 4, 5 there are 1, 2, 3, 16, 30 such arrays respectively. Here are
all the possibilities for n 6 3.

0
0 0

0 1
0 0 1
1 1 0

0 1
0 1 0
1 0 1

0 1 2
0 0 2 1
1 2 1 0
2 1 0 2

0 1 2
0 2 1 0
1 1 0 2
2 0 2 1

0 1 2
0 2 0 1
1 1 2 0
2 0 1 2
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Remark. Given a Latin square on A and a permutation σ on A , we can
form a new Latin square, which I call Lσ, by simultaneously permuting the
rows and columns of A using σ. We regard the Latin squares L and Lσ as
‘essentially equal’.

In the list above, the Latin squares with n = 2 are essentially equal, as are
the latter two for n = 3, but the first one is different (because the number of
i such that i ⊕ i = i is the same for two essentially equal squares). Finally,
two squares of order 4, which are essentially different in the above sense, and
two arrays of order 5, which must be essentially the same in my sense (no
proof supplied here).

0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

0 1 2 3
0 0 1 3 2
1 1 0 2 3
2 3 2 1 0
3 2 3 0 1

0 1 2 3 4
0 0 4 3 2 1
1 4 3 2 1 0
2 3 2 1 0 4
3 2 1 0 4 3
4 1 0 4 3 2

0 1 2 3 4
0 0 4 3 2 1
1 4 2 1 3 0
2 3 1 4 0 2
3 2 3 0 1 4
4 1 0 2 4 3

3 Notice that 11011 already appears in the above sequence (take the last three
digists, then wrap around and take the first two). Accordingly, the output sequence
generated from 11011 is the same is the one given, but you have to make a cyclic
shift by 3, namely

[110111000010100].

Observe that we don’t need to know the shift register itself to be able to do this.
(But it is possible to recover the shift register from the given sequence.)

4 Each sequence has length 6, so in total they contain 6 + 6 = 12 states. There
are 24− 1 = 15 non-zero states, so the above sequences miss exactly three of them.
By inspection, we see that 1101 does not appear in either of the sequences. The
corresponding output sequence turns out to have period 3, namely it is [110]. What
are the other two missing states?

5 For some polynomials the non-trivial cycles are as follows. Only the cycles are
shown (without any extensions to confirm repetition), and they are to the right of
any hyphens present. What is to the left of hyphens is the part of the sequence
that does not repeat.

Polynomial Factorisation Lengths Cycles
x4 + x+ 1 x4 + x+ 1 15 100010011010111
x4 + x3 + 1 x4 + x3 + 1 15 100011110101100

x4 + x3 + x2 + x+ 1 irreducible 5, 5, 5 10001, 10010, 11110
x4 + x2 + 1 (x2 + x+ 1)2 6, 6, 3 100010, 111100, 110
x4 + x2 + x x(x3 + x+ 1) 1, 7 a-0, a-1001011
x4 + x3 + x x(x3 + x2 + 1) 1, 7 a-0, a-1001110
x4 + x2 x2(x+ 1)2 1, 1, 2 ab-0, ab-1, ab-10

x4 + x3 + x2 x2(x2 + x+ 1) 1, 3 ab-0, ab-110
x4 + x3 x3(x+ 1) 1, 1 abc-0, abc-1
x4 x4 1 abcd-0
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6 We determine the irreducible polynomials by ruling out all the factorizable ones.
Note that a reducible polynomial of degree 6 must have an irreducible factor of
degree at most 3 in its factorization. Here is the complete list of irreducible poly-
nomials of degree at most 3:

x, x+ 1, x2 + x+ 1, x3 + x+ 1 and x3 + x2 + 1.

(The list is obtained by observing that an irreducible polynomial f(x) of degree
2 or 3 can not be divisible by neither x nor x + 1. So, f(0) = f(1) = 1 because
we are working with binary coefficients. Writing out what this means in terms of
coefficients of f(x), we are left with the above list.) By throwing away all degree
six polynomials that are divisible by one of the polynomials listed above, we will
be left with all irreducible degree 6 polynomials.

The degree 6 polynomials f(x) = x6 +a5x
5 +a4x

4 +a3x
3 +a2x

2 +a1x+a0 with
a linear factor of x or x+ 1 satisfy f(0) = 0 or f(1) = 0. We throw these away and
assume that f(0) = f(1) = 1. That is, a0 = 1 and 1+a5+a4+a3+a2+a1+a0 = 1,
so a5 = 1 + a4 + a3 + a2 + a1. We have 16 such polynomials.

Among these, to detremine those f(x) that are divisible by (x2 + x + 1) we
write f(x) = q(x)(x2 +x+ 1) and vary q(x) among degree 4 polynomials. We may
assume that q(x) = q(1) = 1 (why?). Thus we find the four reducible polynomials
given below:

x6+x3+x2+x+1, x6+x5+x4+x3+1, x6+x5+x3+x+1, x6+x4+x3+x2+1.

Throwing away these fours, we are left with 12 polynomials. Among these 12
polynomials, we determine the ones that are products of two irreducible degree 3
polynomials. These are the following:

x6 + x2 + 1 = (x3 + x+ 1)2, x6 + x4 + 1 = (x3 + x2 + 1)2

and x6 + x5 + x4 + x3 + x2 + x+ 1 = (x3 + x+ 1)(x3 + x2 + 1).

Throwing away the above 3 polynomials, the 9 (as expected) remaining poly-
nomials are therefore irreducible.

By writing out the output sequence of the corresponding shift register for each
of the above 9 polynomials, we see that the following 6 are primitive:

x6 + x+ 1, x6 + x4 + x3 + x+ 1, x6 + x5 + x2 + x+ 1,
x6 + x5 + 1, x6 + x5 + x3 + x2 + 1, x6 + x5 + x4 + x+ 1.

The remaining 3, namely x6+x3+1, x6+x4+x2+x+1 and x6+x5+x4+x2+1, give
rise to shift registers with periods 9, 21 and 21 (if the initial state is not 000000).
I leave the verification of this to you.

7 We take 5-bit sequences, and follow the sequence given by the shift register until
we get repetition. Then take a 5-bit sequence you have not yet met, and repeat
the process, until you get all 5-bit sequences. One should get something like the
following (though you can vary the start points).

Period 21: 100001111101010011000-10000.
Period 7: 0010111-00101.
Period 3: 110-11011.
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Here, the repeating parts, of lengths 21, 7 and 3 are shown before the hyphens,
though one needs to go 5 beyond the hyphen to confirm repetition. The shift
register does not have period 25 − 1 for any 5-tuple, so it is not primitive. In fact,
the polynomial is not irreducible, since x5 +x4 + 1 = (x2 +x+ 1)(x3 +x+ 1) (with
both factors irreducible).
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