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Problem 1

lem 1. Below you are asked to prove several small facts about convexity leading to

a prove of the MSE function being convex.

L.

Fiow

Show that the sum of two convex functions 1s convex. Hint: use the definition of
convexity.

. Prove that, for any convex function g : C C R — R, the function f(z) := ag(z) + b

is also convex. Here b € R is a scalar, and a € R is a positive scalar (i.e. a > 0).

Verify that the function h(w) := zw — y for fixed z € R and y € R satisfies
h(Aw + (1 — AN)v) = Ah(w) + (1 — A)h(v),
for all w,v € R and A € [0, 1].

Show that the function f(w) := g(h(w)), where g : R — R is some convex function
and £ the function from Question |3} 1s convex.

. Verify that the function g : R — Rs¢ with g(z) := 322 is convex.

2

Show that the simplhified MSE function MSE : R — R with
1 2
MSE(w) = §($w —y)

1S convex.

Hint: make us of Questions [T

Prove that the general MSE function MSE : R4! — R>o with
1 2
MSE(w) := o[ Xw — y||?,
2s

for a matrix X € R**(4*1) and a vector y € R®, is convex.

"



Reminder

A function f: C - R over a convex set C is called convex if

JOx + (1 = 2)y) < A0 + (1 = DA(y)

is satisfied for all x,y € C and 4 € [0,1].

b

)
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Reminder

A function f: C - R over a convex set C is called convex if

JOx + (1 = 2)y) < A0 + (1 = DA(y)

is satisfied for all x,y € C and 4 € [0,1].

b

; J This definition assumes any property of the function f
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Reminder

A twice differentiable function f: C = R gver a convex set C is called convex if

2
x > ()
dx?

is satisfied for all x € C.

b

of
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Reminder

A twice differentiable function f: C = R gver a convex set C is called convex if

2
x > 0
dx?
is satisfied for all x € C.
l’ For a function of n variables the condition is on the Hessian which should

' be positive semi-definite
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1. Show that the sum of two convex functions 1s convex. Hint: use the definition of
convexity.
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1. Show that the sum of two convex functions 1s convex. Hint: use the definition of
convexity.

We want to show that the sum of two convex functions 1S convex as well.

Let f,g,h: C — R such that for all z € C we have h(z) = f(x)+g(x), for
two convex functions f and g. Then we observe the following:
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1. Show that the sum of two convex functions 1s convex. Hint: use the definition of
convexity.

We want to show that the sum of two convex functions 1S convex as well.

Let f,g,h: C — R such that for all z € C we have h(z) = f(x)+g(x), for
two convex functions f and g. Then we observe the following:

h(dz + (1 — N)y) =
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1. Show that the sum of two convex functions 1s convex. Hint: use the definition of
convexity.

We want to show that the sum of two convex functions 1S convex as well.

Let f,g,h: C — R such that for all z € C we have h(z) = f(x)+g(x), for
two convex functions f and g. Then we observe the following:

h(Az + (1 = AN)y) = f(Az + (1 — AN)y) + g(Az + (1 — A)y)
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1. Show that the sum of two convex functions 1s convex. Hint: use the definition of
convexity.

We want to show that the sum of two convex functions 1S convex as well.

Let f,g,h: C — R such that for all z € C we have h(z) = f(x)+g(x), for
two convex functions f and g. Then we observe the following:

h(Ax + (1 —Ny) = f(Az+ (1 —N)y) +g(Ax+ (1 — N)y)
< AM(z) + (1= A)f(y) +Ag(z) + (1 —A)g(y)

of
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1. Show that the sum of two convex functions 1s convex. Hint: use the definition of
convexity.

We want to show that the sum of two convex functions 1S convex as well.

Let f,g,h: C — R such that for all z € C we have h(z) = f(x)+g(x), for
two convex functions f and g. Then we observe the following:

h(Ax + (1 —Ny) = f(Az+ (1 —N)y) +g(Ax+ (1 — N)y)
< Af(z) + (1 =X f(y) + Ag(z) + (1 = A)g(y)
= A f(z) +g9(z)] + (1= A) [f(y) + 9(y)]

b

)
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1. Show that the sum of two convex functions 1s convex. Hint: use the definition of
convexity.

We want to show that the sum of two convex functions 1S convex as well.

Let f,g,h: C — R such that for all z € C we have h(z) = f(x)+g(x), for
two convex functions f and g. Then we observe the following:

h(Ax + (1 —Ny) = f(Az+ (1 —N)y) +g(Ax+ (1 — N)y)
< AM(z) + (1= A)f(y) +Ag(z) + (1 —A)g(y)
= Af(z) +g9(z)] + (1= A) [f(y) + 9(y)]
l’ = Mhi(z) + (1 — A)h(y)

)
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2. Prove that, for any convex function g : C C R — R, the function f(z) := ag(z) + b
is also convex. Here b € R is a scalar, and a € R is a positive scalar (i.e. a > 0).

Again, we use the definition of convexity and show

fAz+(1-A)y)=

of
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2. Prove that, for any convex function g : C C R — R, the function f(z) := ag(z) + b
is also convex. Here b € R is a scalar, and a € R is a positive scalar (i.e. a > 0).

Again, we use the definition of convexity and show

fAx+(1—=Ny)=ag(Ax+ (1 —XN)y)+b

of
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2. Prove that, for any convex function g : C C R — R, the function f(z) := ag(z) + b
is also convex. Here b € R is a scalar, and a € R is a positive scalar (i.e. a > 0).

Again, we use the definition of convexity and show

fAx+(1—=Ny)=ag(Ax+ (1 —XN)y)+b
<aXg(z)+a(l —A)g(y) +b

of
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2. Prove that, for any convex function g : C C R — R, the function f(z) := ag(z) + b
is also convex. Here b € R is a scalar, and a € R is a positive scalar (i.e. a > 0).

Again, we use the definition of convexity and show

fAx+(1—=Ny)=ag(Ax+ (1 —XN)y)+b
<aig(z) +a(l—A)g(y) +b
= alg(z) +a(l —A)g(y) + Ab+ (1 — A)b

of
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2. Prove that, for any convex function g : C C R — R, the function f(z) := ag(z) + b
is also convex. Here b € R is a scalar, and a € R is a positive scalar (i.e. a > 0).

Again, we use the definition of convexity and show

fAz+ (1= A)y) = ag(Az + (1 — N)y) +
< arg(z) +a(l—A)g(y )
= aAg(z) +a(l — N)g(y )+)\b+(1—)\)b
= A(ag(z) +b) + (1 — A) (ag(y) +b)

of
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2. Prove that, for any convex function g : C C R — R, the function f(z) := ag(z) + b
is also convex. Here b € R is a scalar, and a € R is a positive scalar (i.e. a > 0).

Again, we use the definition of convexity and show

fAz + (1= AN)y) = ag(Az + (1 — AN)y) +
< a)lg(z) +a(l — N)g(y )
= aAg(z) +a(l — N)g(y )+)\b+(1—)\)b
= A(ag(z) +b) + (1 — A) (ag(y) + b)
= Af(z) + (1= A)f(y),

b

of
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2. Prove that, for any convex function g : C C R — R, the function f(z) := ag(z) + b
is also convex. Here b € R is a scalar, and a € R is a positive scalar (i.e. a > 0).

Again, we use the definition of convexity and show

fAz + (1= AN)y) = ag(Az + (1 — AN)y) +
< a)lg(z) +a(l — N)g(y )
= aAg(z) +a(l — N)g(y )+)\b+(1—)\)b
= A(ag(z) +b) + (1 — A) (ag(y) + b)
= Af(z) + (1= A)f(y),

lq for all z,y €C and A € |0, 1].

of
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3. Verify that the function h(w) := xw — y for fixed x € R and y € R satisfies
h(Aw + (1 — ANv) = Ah(w) + (1 — A)h(v),

for all w,v € R and A € |0, 1].

of
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3. Verify that the function h(w) := xw — y for fixed x € R and y € R satisfies
h(Aw + (1 — ANv) = Ah(w) + (1 — A)h(v),

for all w,v € R and A € |0, 1].

h(Aw+ (1 =2)y) =

of
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3. Verify that the function h(w) := xw — y for fixed x € R and y € R satisfies
h(Aw + (1 — ANv) = Ah(w) + (1 — A)h(v),

for all w,v € R and A € |0, 1].

h(Aw+ (1 =) = xw+ (1 —Dvx —y

of
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3. Verify that the function h(w) := xw — y for fixed x € R and y € R satisfies
h(Aw + (1 — A)v) = Ah(w) + (1 — A)h(v),

for all w,v € R and A € |0, 1].

h(Aw+ (1 =) = xw+ (1 —Dvx —y
=Axw+ (1 —A)vx—Ay — (1 — A)y

b

)

www.gmul.ac.uk n/QMUL y@QMUL




3. Verify that the function h(w) := xw — y for fixed x € R and y € R satisfies
h(Aw + (1 — A)v) = Ah(w) + (1 — A)h(v),

for all w,v € R and A € |0, 1].

h(Aw+ (1 =) = xw+ (1 —Dvx —y
=Axw+ (1 —A)vx—Ay — (1 — A)y
= Alxw —y) + (1 =) (vx —y)

b

)
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3. Verify that the function h(w) := xw — y for fixed x € R and y € R satisfies
h(Aw + (1 — A)v) = Ah(w) + (1 — A)h(v),

for all w,v € R and A € |0, 1].

h(Aw+ (1 =) = xw+ (1 —Dvx —y
=Axw+ (1 —A)vx—Ay — (1 — A)y
= Axw —y) + (I = )(vx —y)
= Ah(w) + (1 — A)h(v)

b

)
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4. Show that the function f(w) := g(h(w)), where g : R — R is some convex function
and h the function from Question 3| 1s convex.
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4. Show that the function f(w) := g(h(w)), where g : R — R is some convex function
and h the function from Question 3| 1s convex.

For any convex function g and the function h from Exercise [3| we estimate
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4. Show that the function f(w) := g(h(w)), where g : R — R is some convex function
and h the function from Question 3| 1s convex.

For any convex function g and the function h from Exercise [3| we estimate

fAw+ (1 —A)v) =

of
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4. Show that the function f(w) := g(h(w)), where g : R — R is some convex function
and h the function from Question 3| 1s convex.

For any convex function g and the function h from Exercise [3| we estimate

fAw+ (1 —A)v) = g(h(Aw + (1 — A)v))

of
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4. Show that the function f(w) := g(h(w)), where g : R — R is some convex function
and h the function from Question 3| 1s convex.

For any convex function g and the function h from Exercise [3| we estimate

fAw+ (1 —A)v) = g(h(Aw + (1 — A)v))
g(Ah(w) + (1 = A)h(v))

of
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4. Show that the function f(w) := g(h(w)), where g : R — R is some convex function
and h the function from Question 3| 1s convex.

For any convex function g and the function h from Exercise [3| we estimate

fOw + (1= X)) = g(h(Aw + (1 — A)v))
= g(Ah(w) + (1 = A)h(v))
< Ag(h(w)) + (1 — A)g(h(v))

of
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4. Show that the function f(w) := g(h(w)), where g : R — R is some convex function
and h the function from Question 3| 1s convex.

For any convex function g and the function h from Exercise [3| we estimate

fAw+ (1 —A)v) = g(h(Aw + (1 — A)v))
= g(Ah(w) + (1 — A)h(v))
< Ag(h(w)) + (1 — A)g(h(v))
= Af(w) + (1= A)f(v).
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4. Show that the function f(w) := g(h(w)), where g : R — R is some convex function
and h the function from Question 3| 1s convex.

For any convex function g and the function h from Exercise [3| we estimate

fAw+ (1 —A)v) = g(h(Aw + (1 — A)v))
= g(Ah(w) + (1 — A)h(v))
< Ag(h(w)) + (1 — A)g(h(v))
= Af(w) + (1= A)f(v).

F Thus, the composition g(h(w)) is also convex.

of
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5. Verify that the function g : R — R with g(z) := %:1:2 1S convex.
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5. Verify that the function g : R — R with g(z) := %:1:2 1S convex.

For the function g(z):= ;z® we estimate
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5. Verify that the function g : R — R with g(z) := %:1:2 1S convex.

For the function g(z):= ;z® we estimate

2Mg(x) +2(1 — A)g(y) — 29(Az + (1 — A)y)

of
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5. Verify that the function g : R — R with g(z) := %:1:2 1S convex.

For the function g(z):= ;z® we estimate

2Mg(x) +2(1 — A)g(y) — 29(Az + (1 — A)y)
=\ + (1= N> — Oz + (1 = N\y)?
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5. Verify that the function g : R — R with g(z) := %:1:2 1S convex.

For the function g(z):= ;z® we estimate

2Mg(x) +2(1 — A)g(y) — 29(Az + (1 — A)y)
=z + (1 =Ny’ — Az + (1 = N)y)?
—Az? + (1 — N2 — X222 —20(1 — Nazy — (1 — \)%e)?

of
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1

5. Verify that the function g : R — Ry with g(z) := 52? is convex.

For the function g(zx) := %:1:2 we estimate

2Ag(z) +2(1 — A)g(y) — 29(Az + (1 — N)y)
=z + (1 =Ny’ — Az + (1 = N)y)?
= Az + (1 = N)y* — X°z2° = 2X\(1 — N)zy — (1 — N)*y?
= A1 —=XN)z? + X1 = N)y® —2X(1 — N)zy

of
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5. Verify that the function g : R — Ry with g(z) := 52* is convex.

For the function g(zx) := %:1:2 we estimate

2Ag(z) +2(1 — A)g(y) — 29(Az + (1 — N)y)
=z + (1 =Ny’ — Az + (1 = N)y)?
= Az + (1 = N)y* — X°z2° = 2X\(1 — N)zy — (1 — N)*y?
= A1 —XN)z*+ \(1 /\)y2 —2X(1 — N)zy
=A1-N)(z—y)* >

of
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5. Verify that the function g : R — Ry with g(z) := 52* is convex.

For the function g(zx) := %:1:2 we estimate

2Mg(z) +2(1 — A)g(y) — 29(Az + (1 — A)y)
=z + (1 =Ny’ — Az + (1 = N)y)?
= Az’ + (1 — )\)y2 — \x? — 2M(1 — XN)zy — (1 — A)*y?
= A1 —XN)z* + \(1 /\)y2 —2X(1 — N)zy
=A1-X)(z—y)*>

since A(1 —A) >0 for A€ [0,1], which implies

g(Az + (1 —A)y) < Ag(z) + (1 —A)g(y) .
' Hence, we have concluded that g 1s convex.
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5. Verify that the function g : R — R with g(z) := %:1:2 1S convex.
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5. Verify that the function g : R — Ry with g(z) := 52* is convex.

Alternatively: we know that the function is twice differentiable
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5. Verify that the function g : R — Ry with g(z) := 52* is convex.

Alternatively: we know that the function is twice differentiable
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5. Verify that the function g : R — Ry with g(z) := 52* is convex.

Alternatively: we know that the function is twice differentiable

d (1 ,
— | —x]) =120
l' dx? \ 2
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6. Show that the simplhified MSE function MSE : R — R with

1 .
MSE(w) = §(a:w — )

1S convex.
Hint: make us of Questions [IH5]

of
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6. Show that the simplhified MSE function MSE : R — R with

MSE(w) = %(a:w — )

1S convex.

Hint: make us of Questions [IH5]

We verify this result by combining the results from Exercise [3|, Exercise

4] and Exercise [5|. We can write MSE(w) = g(h(w)), for h(w) := zw —y

and ¢g(z) := %22. From Exercise |5 we know that g 1s convex and from Exercise

@ we know that the composition goh is convex. Since this is equivalent
to the MSE, we already know that the MSE 1s convex.

of
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7. Prove that the general MSE function MSE : R4 — R~ with
1 2
MSE(w) := o[ Xw — |,
S

for a matrix X € R**(@*1) and a vector y € R*, is convex.

of
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7. Prove that the general MSE function MSE : R4 — R~ with
1 2
MSE(w) := o[ Xw — |,
S

for a matrix X € R**(@*1) and a vector y € R*, is convex.

We proceed 1n similar fashion as 1n the previous exercise. We point out

: _ _ 1 2 __ 1 2
that the MSE can be written as MSE(w) = g(h(w)) for g(y) = o-||z||* = 5> ._; |2l
and h(w) = Xw — y. Note that ¢ is convex since the function z — z°
is convex (see Exercise [§) and since the sum of convex functions is also

convex (see Exercise |1). In the same way as in Exercise [3| we verify

h(Aw + (1 — A\)v) = Mr(w) + (1 — M)A(v):

hence, MSE 1s a composition of a convex and an affine-linear function
and as a consequence of Exercise {4, MSE is convex.

www.gmul.ac.uk n/QMUL y@QMUL




Problem 2

Problem 2. Set up a linear regression problem of the form

3
1 . .
~ : (0) (1) .(2) (2)|2
W = arg min { — w w '\ — 1
¢ min {23 >t + 4O } | 8
for data points (z),yM)) with z!) = —¢ and y = 2, (z?,y?) with 2 = 0 and

y?) =2 and (z®),y®)) with z®) = ¢ and y® = 2, for some constant ¢ > 0.

1. Derive the normal equation for this problem.

A

2. Solve the normal equations for your weights w = (0'?, %)),

3. Repeat the previous exercise, but this time assume you make an error in your
(2)

measurement. The new, perturbed measurements ys read y((;l) =2+¢&,y' =2+¢
and y§3) =2 —¢.
4. Compute the error between w and w;s in the Euclidean norm.

5. How does the error compare with the data error d := ||y — ys||7
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for data points (zY,y1)) with z!) = —¢ and y) = 2, (z?,y?) with 2?) = 0 and
y?) =2 and (2, y®)) with z®) = ¢ and y® = 2, for some constant ¢ > 0.

1. Derive the normal equation for this problem.
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for data points (zY,y1)) with z!) = —¢ and y) = 2, (z?,y?) with 2?) = 0 and
y?) =2 and (2, y®)) with z®) = ¢ and y® = 2, for some constant ¢ > 0.

1. Derive the normal equation for this problem.

X'Xw=X"y
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for data points (zY,y1)) with z!) = —¢ and y) = 2, (z?,y?) with 2?) = 0 and
y?) =2 and (2, y®)) with z®) = ¢ and y® = 2, for some constant ¢ > 0.

1. Derive the normal equation for this problem.

X'Xw=X"y
1 —c
X=11 0
1 ¢
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for data points (zY,y1)) with z!) = —¢ and y) = 2, (z?,y?) with 2?) = 0 and
y?) =2 and (2, y®)) with z®) = ¢ and y® = 2, for some constant ¢ > 0.

1. Derive the normal equation for this problem.

X'Xw=X"y

1 —c
x=[1 o YT — 1 1 1
[ . —c 0 c
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for data points (zY,y1)) with z!) = —¢ and y) = 2, (z?,y?) with 2?) = 0 and
y?) =2 and (2, y®)) with z®) = ¢ and y® = 2, for some constant ¢ > 0.

1. Derive the normal equation for this problem.

X'Xw=X"y
1 —c 2
1 ¢ 2
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for data points (zY,y1)) with z!) = —¢ and y) = 2, (z?,y?) with 2?) = 0 and
y?) =2 and (2, y®)) with z®) = ¢ and y® = 2, for some constant ¢ > 0.

1. Derive the normal equation for this problem.

X'Xw=X"y
1 —c 2
1 ¢ 2
1 —c
R 1 1 1 Wo
X' Xw =
—c 0 c L0 W
1 ¢
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for data points (zY,y1)) with z!) = —¢ and y) = 2, (z?,y?) with 2?) = 0 and
y?) =2 and (z®),y®)) with 2 = ¢ and y® = 2, for some constant ¢ > 0.

1. Derive the normal equation for this problem.

X'Xw=X"y
1 —c 2
1l ¢ 2
Yoo (111 } _OC wo\ (3 0\ (W
\=c 0 ¢ L. wi] N0 2¢2) \W
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for data points (zY,y1)) with z!) = —¢ and y) = 2, (z?,y?) with 2?) = 0 and
y?) =2 and (2, y®)) with z®) = ¢ and y® = 2, for some constant ¢ > 0.

1. Derive the normal equation for this problem.

P
1 1 1
X' = —
—c 0 ¢ Y g
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for data points (zY,y1)) with z!) = —¢ and y) = 2, (z?,y?) with 2?) = 0 and
y?) =2 and (2, y®)) with z®) = ¢ and y® = 2, for some constant ¢ > 0.

1. Derive the normal equation for this problem.

2
1 1 1
X! = —
—c 0 c Y %
2
3 0 Wo T 1 1 1
— X —
0 2c2 44| Y —c 0 c %
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for data points (zY,y1)) with z!) = —¢ and y) = 2, (z?,y?) with 2?) = 0 and
y?) =2 and (2, y®)) with z®) = ¢ and y® = 2, for some constant ¢ > 0.

1. Derive the normal equation for this problem.

2
1 1 1
X! = —
—c 0 c Y %
2
3 0 Wo T 1 1 1
— X —
0 2c2 44| Y —c 0 c %
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2. Solve the normal equations for your weights w = (0'?,w1))".
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2. Solve the normal equations for your weights w = (0'?,w1))".

0 2¢%2/) \M 0

3wg =6 = wy =2
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2. Solve the normal equations for your weights w = (0'?,w1))".

3 0 Wo 6
0 2¢%2/) \M 0

3wg =6 = wy =2

2C2W1=O_)W1=O

of

www.gmul.ac.uk n/QMUL




2. Solve the normal equations for your weights w = (0'?,w1))".

(0 2) (1) = 6)

3wg =6 = wy =2

2C2W1=O_)W1=O

()= (0)

of
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3. Repeat the previous exercise, but this time assume you make an error in your
measurement. The new, perturbed measurements ys read y((sl) = 2+ ¢, y((;Q) =2+¢

and y§3) =2 — €.
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3. Repeat the previous exercise, but this time assume you make an error in your
1 2
measurement. The new, perturbed measurements ys read yg ) =2+ g, y((s ) =92+¢

and y§3) =2 — €.

2+ €

3 O W() T
— X —
0 2¢2) \Wi SRR Y s
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3. Repeat the previous exercise, but this time assume you make an error in your
1 2
measurement. The new, perturbed measurements ys read yg ) =2+ g, y((s ) =92+¢

and y§3) =2 — €.

o1 2+ €

3 O W() T
— X —
0 2¢2) \Wi SRR Y s

3 0 Wo 6+ ¢
0 2c2 Wi —2ce
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3. Repeat the previous exercise, but this time assume you make an error in your
1 2
measurement. The new, perturbed measurements ys read y(g ) =2+ g, y((s ) =92+¢

and y§3) =2 — €.

2+ €

3 O W() T
— X —
0 2¢2) \Wi SRR Y s

3 0 Wo 6+ ¢
0 2c2 Wi —2ce
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4. Compute the error between w and ws in the Euclidean norm.
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4. Compute the error between w and ws in the Euclidean norm.

A A A A N2
W=l = [ ) O — b))
l
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4. Compute the error between w and ws in the Euclidean norm.

A A A A N2
W=l = [ ) O — b))
l

>
|
|
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4. Compute the error between w and ws in the Euclidean norm.

N4 L

P Wo\ (2 VAV_WO_ T3
S \wi ) \0 o \w )\ _¢&
C
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4. Compute the error between w and ws in the Euclidean norm.

N4 L

P Wo\ (2 VAV_WO_ T3
S \wi ) \0 o \w )\ _¢&
C

of
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4. Compute the error between w and ws in the Euclidean norm.

. £\ ? £\ 2 c2 |52 £4/9 + 2
o — sl =/ (2- (2+5)) + (0-2) = /2 + 5 =22

of
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4. Compute the error between w and ws in the Euclidean norm.

£\ 2 £\ 2 e2 g2 £4/9 + 2
v — sl =1/ (2- (2+3)) +(0-2) :\/ - =
l — 5] \/( 3 . C 0 2 3¢
£ 2 ¢
{ —z‘\/”(g) o
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5. How does the error compare with the data error J := ||y — ys||7
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5. How does the error compare with the data error J := ||y — ys||7

o € c?
|lw — W] =—\ 1+?
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5. How does the error compare with the data error J := ||y — ys||7

o € c?
|lw — W] =—\ 1+?

ly — ysll = 6’\/g
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5. How does the error compare with the data error J := ||y — ys||7

CZ

€
W=l = =1/ 1+ —
| N| C\ :

ly — ysll = 6’\/g

1% = Wsll 3> 1|y = y5ll for ¢ =0

of
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5. How does the error compare with the data error J := ||y — ys||7

o € c?
|lw — W] =—\ 1+?

ly — ysll = 6’\/g

1% = Wsll 3> 1|y = y5ll for ¢ =0

The error in reconstruction is dominated by the ratio ¢/c. If ¢< ¢ the
error can get potentially very large compared to the data error ¢ = |[y—
|| = ev/3, which does not depend on c¢. Suppose £ = 1/100 and ¢ = 1/1000,

then 6 ~ 0.01732 but £/c = 10. Hence, the data error d is amplified by
a factor larger than 577 in the reconstruction.
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Problem 3

Problem 3. Let us consider a standard normal equation for a linear regression in dimensions
d x 1 (i.e. output is n = 1 dimensional). Let y and ys be non-perturbed and perturbed
output data correspondingly.

d+1
W —wsl> =) o, (0D, y —ys5)

j=1

|2

for two least-squares solutions w and ws with singular value decompositions

d+1 d+1
W = E Jj_lv(J)(u(J), y) and Wz = Z aj_lv(])(u(”, Vs) 5
g=1 j=1

where 0, ul), v are singular values and right- /left- singular vectors of matrix X. Hint:
make use of the fact that singular vectors are orthonormal.

www.gmul.ac.uk n/QMUL y@QMUL




d+1 2
W —wsl* = | o; v, (y —ys))

7=1

of
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d+1 2
W —wsl* = | o; v, (y —ys))

=1
d+1 °
= |lor v W, (y —ys)) + ) o7 v, (y — ys))
j=2

of

www.gmul.ac.uk n/QMUL y@QMUL




d+1 2
W —wsl* = | o; v, (y —ys))

=1
d+1 °
= |lor v W, (y —ys)) + ) o7 v, (y — ys))
j=2

la+bl> = ) (@+b,)

l

of
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d+1 2
W —wsl* = | o; v, (y —ys))

=1
d+1 °
= |lor v W, (y —ys)) + ) o7 v, (y — ys))
j=2

la+bl> = ) (@+b,)

l

= Z (ai2 + 2a.b; + biz)

of
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d+1 2
W —wsl* = | o; v, (y —ys))

=1
d+1 °
= |lor v W, (y —ys)) + ) o7 v, (y — ys))
j=2

la+bl> = ) (@+b,)

= Z (ai2 + 2a.b; + biz)

.{ = llall® + 2(a. b) + |Ib]?
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d+1 2
01—1\,(1)([1(1), (v —ys)) + Z Uj—lv(]')<u(j)’ (y —vs))

J=2

of
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d+1 2
01—1V(1)<u(1)’ (v —ys)) + Z aj‘lv(j)(u(j), (y —vs))

J=2

||01_1V(1)(u(1), (y — Yo‘))”Q

d+1
— 207 (u®, (y — ys)) <V“), > o v (y - }’5)>>

i—2
d+1 2

+11> o5 v, (y — ys))
i—2

of
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= [lor O u®, (y — ys))]°

d+1
— 207 (0, (y — y5)) <V(1) Qo v (y - ya)>>

=2
d+1 °

+ (1) oV (y —ys))
=2

B 2
= o |(u™, (y —ya))| IV

of
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= [lor v ™, (y —ya))

d+1
~ 207 u®, (y — y5)) <v‘1% oV, (y - y5>>>

=2

d+1 g

T Z o; v (u?, (y —ys))

J=2

_ 2
= o [0, (y —ya)[" IV
d+1

— 207 (uY, (v — y5)) Z 0_7'—1 <V(1)= VU)) (u?, (y — vs))

J=2

of
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— oty ®
”‘71 v (u(l),(y—y(s»”?

_20-—1 (1)
CHu (y — ) (v dEH —1yU
: — Y

d+1 .
+ (13 o5 v (@ 2
o Y — Yo‘))
— 0'_2 (1)
1 u
(@, (y —ys))|” VO
_ 20—1< (1) i
po(aty —
(Y —¥s5)) Z 0']-_1 <v(1)‘ v\ (@)
N i ’ > <u ) (y o yo‘)>
N B |
' Z o; Ly @) (u@ ( 2
= Y — y(5)>
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B 2
= o |(u™, (y —ya))|” IV
d+1
=207 (0, (y —ys)) p_ o (v vD) (), (y — y5))

j=2
2

d+1
+ Z Ujlv(j)ﬁl(j), (Y —¥s))

j=2

of
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— Ul 2 i u(l) y y6)>i2 m 1

=207, (y —ys)) Yo7 (v, V) (0, (v — )

j=2
2

d+1
+ Z U;IVU)@IU), (Y —¥s))
j=2

of
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=072 |(u®, (y — ya))| m |

— 207 (0 (y —ys)) ) o (Y (y — ys))

j=2

d+1
+ Z U;IVU)@IU), (Y —¥s))

j=2

of
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—012\ (u', (y - y"mQ |

— 207 (0 (y —y5)) ) o (U, (y —ys))
j=2
’ 0
+ Za-lkum (v - ¥s))
71=2
d+1 2

i 2 _
:012|(u(1),(y—y5)>| 4 ZU 1.,(7) u(J) (y — vs))
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d+1 2
W — W)l Z o v (Y (y — ys))

j=1

of
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) d
W — Wil = irl:
3 (y o y0)>

7=1

— 52|, 2
(4 Y
N T
, Y —Vs| T ~hyWD(uY
oV, y -
pr Y5>

of
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~N A

W — Ws||*

(D

Y o VI (y - ys))

d+1
j=1
2 -2
9y IR y§ + 02
, 2
u,y — y;

o)

Y — Vs

d+1

1
Z 7 v(UD, y —y.)
j=3
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Problem 4

Problem 4. Set up a linear regression problem of the form

weR?2

2
1 | .
A, ' (0) (1) .(2) (2) |2
W = arg I1min w + w'\’'x ) 3
g {28 ;21:| Y | } (3)

for data points (z!,yM) with z(!) =1 —c and yV) =1, (z?,y?) with 23 =1+ ¢ and
y?) = 1 for some constant ¢ > 0.

1.
2.

Derive the normal equation for this problem.

For the matrix X you have set up find its singular values and left-/right- singular
vectors.

Solve the normal equations for your weights w = (0, @),

. Repeat the previous exercise, but this time assume you make an error in your

measurement. Consider two cases of the new, perturbed measurements

e y;s reads y((sl) =1—-¢, ygz) =1+4e.

e ys reads y((;l) =1+e¢, y§2) =1+e.

. In both cases compute the error between w and w4 in the Euclidean norm and

compare with the data error ¢ := ||y — ys||?
. Explain why do you observe such a huge difference between the two cases when
c— 07

Hint: make a use of the SVD and use singular vectors you have obtained earlier.
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for data points (z,yM) with 2(!) =1 —cand yV) =1, (z?,y?) with 22 =1+ ¢ and
y?) = 1 for some constant ¢ > 0.

1. Derive the normal equation for this problem.

1 1-c¢ T
X= X — p—
1 1+c l—c 1+c Y
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for data points (z,yM) with 2(!) =1 —cand yV) =1, (z?,y?) with 22 =1+ ¢ and
y?) = 1 for some constant ¢ > 0.

1. Derive the normal equation for this problem.

1 1-c¢ T
X= X — p—
1 1+c l—c 1+c Y

X'Xw = = X'y =
2 2+202) \w Y
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for data points (z,yM) with 2(!) =1 —cand yV) =1, (z?,y?) with 22 =1+ ¢ and
y?) = 1 for some constant ¢ > 0.

1. Derive the normal equation for this problem.

1 1-c¢ T | | |
X= X — p—
(1 1+c> (l—c 1+c) Y (1)

of
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2. For the matrix X you have set up find its singular values and left-/right- singular
vectors.
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2. For the matrix X you have set up find its singular values and left-/right- singular
vectors.
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2. For the matrix X you have set up find its singular values and left-/right- singular
vectors.

det[X'X — 6711 = 0
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2. For the matrix X you have set up find its singular values and left-/right- singular
vectors.

det[X'X — 6711 = 0

det l = ()
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2. For the matrix X you have set up find its singular values and left-/right- singular
vectors.

det(X'X — 611 =0

2 — o7 2
det =0
2 2+2c* -0

6! =22+ c*)o7 +4c* =0
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2. For the matrix X you have set up find its singular values and left-/right- singular
vectors.

det(X'X — 611 =0

2 — o7 2
det =0
2 2+2c* -0

6! =22+ c*)o7 +4c* =0

01:\/cz+2+\/c4—|—4,

4 oo =2 +2— A+ 4
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2. For the matrix X you have set up find its singular values and left-/right- singular
vectors.
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2. For the matrix X you have set up find its singular values and left-/right- singular
vectors.
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2. For the matrix X you have set up find its singular values and left-/right- singular

0 0 Vl(J) _ VI(J)
2 2 —+ 2C2 Vé]) J Véj)
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2. For the matrix X you have set up find its singular values and left-/right- singular

0 0 Vl(J) _ VI(J)
2 2 —+ 2C2 Vé]) J Véj)

(J) () — ~2,,())
2\/1 + 2\/2 =07V,
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2. For the matrix X you have set up find its singular values and left-/right- singular

0 0 Vl(J) _ VI(J)
2 2 —+ 2C2 Vé]) J Véj)

(J) () — ~2,,())
2\/1 + 2\/2 =07V,

9)
O; 2

2

(J) — (J)
Vo = i

of
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2. For the matrix X you have set up find its singular values and left-/right- singular
vectors.
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2. For the matrix X you have set up find its singular values and left-/right- singular
vectors.
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2. For the matrix X you have set up find its singular values and left-/right- singular
vectors.
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2. For the matrix X you have set up find its singular values and left-/right- singular
vectors.
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2. For the matrix X you have set up find its singular values and left-/right- singular
vectors.
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2. For the matrix X you have set up find its singular values and left-/right- singular
vectors.
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2. For the matrix X you have set up find its singular values and left-/right- singular
vectors.
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2. For the matrix X you have set up find its singular values and left-/right- singular
vectors.

4

2 _
4+ (07 —2)°

Y
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2. For the matrix X you have set up find its singular values and left-/right- singular
vectors.

4

2 _
4+ (07 —2)°

Y

.
| oz —2
v =y, ——=—7

2
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2. For the matrix X you have set up find its singular values and left-/right- singular
vectors.

, 4
}/ —
4+ (07 —2)°
> — 2 !
v = y,——7
2
]
2
2 _ 9
L0) — 2 i

\/4+(0j2—2)2,\/4+(0j2—2)2

of
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2. For the matrix X you have set up find its singular values and left-/right- singular
vectors.
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2. For the matrix X you have set up find its singular values and left-/right- singular
vectors.

U = 671 xp0
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2. For the matrix X you have set up find its singular values and left-/right- singular

U = 6= Xy
2
‘ 4 + (67 — 2)?
ufj) . 0_1 1 1-c¢ \/ K
Ul I \1 1+c¢ oj —2

VA (6 =22
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2. For the matrix X you have set up find its singular values and left-/right- singular

U = 6= Xy
2
‘ 4 + (67 — 2)?
ufj) . 0_1 1 1-c¢ \/ K
"y 7 \1 1+4c 0 =2

VA (6 =22

0].2(1 —c)+ 2c

ne) » \/4+(aj2—2)2

uéj) | of(14+¢)—2c
VA (6 =22
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3. Solve the normal equations for your weights w = (w(®, @) T,
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3. Solve the normal equations for your weights w = (w(®, @) T,

2 2 Wo 2
2 2+ 2c? W 2
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3. Solve the normal equations for your weights w = (w(®, @) T,

2 2 Wo 2
2 2+ 2c? W 2
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3. Solve the normal equations for your weights w = (w(®, @) T,

wy + (1 +cz)w1 = ]

of
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3. Solve the normal equations for your weights w = (w(®, @) T,

(2 222) ()= ()

WO+W1:1 WOZI_WI

wy + (1 +cz)w1 = ]

of
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3. Solve the normal equations for your weights w = (w(®, @) T,

(2 222) ()= ()

WO+W1:1 WOZI_WI

wo+ (1 +cHw; = 1 1 —w +(1+cHw =1

of
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3. Solve the normal equations for your weights w = (w(®, @) T,

(2 222) ()= ()

WO+W1:1 WOZI_WI

wo+ (1 +cHw; = 1 1 —w +(1+cHw =1
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4. Repeat the previous exercise, but this time assume you make an error in your
measurement. Consider two cases of the new, perturbed measurements

e ys reads y((sl) =1—g¢, yéz) =1+e.

e y; reads y((sl) =1+¢, y§2) =1+e.

www.gmul.ac.uk n/QMUL y@QMUL




4. Repeat the previous exercise, but this time assume you make an error in your
measurement. Consider two cases of the new, perturbed measurements

e ys reads y((sl) =1—g¢, yéz) =1+e.
e y; reads y((sl) =1+¢, y§2) =1+e.

Repeating the previous exercise with the perturbed data ys; = (1 — € 1—{—5)T

ylelds the normal equation
2 2 . _(1 1 |
2 24922) T \1—¢ 14¢)Y9
B 2
-\ 24 2¢ce )
with the solution
: ] — &
Ws = gc

'i/QMUL y@QMUL
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4. Repeat the previous exercise, but this time assume you make an error in your
measurement. Consider two cases of the new, perturbed measurements

e ys reads y((sl) =1—g¢, yéz) =1+e.

e y; reads y((sl) =1+¢, y§2) =1+e.
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4. Repeat the previous exercise, but this time assume you make an error in your
measurement. Consider two cases of the new, perturbed measurements

e ys reads y((sl) =1—g¢, yéz) =1+e.

e y; reads y((sl) =1+¢, y§2) =1+e.

-
For the perturbed data ygzz(l—FS' 14-8) the normal equation takes

the form
2 2 . 11\
2 2422 l—c 14¢)Y9

2+ 2¢
2+2¢ )

z
||

with the solution
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5. In both cases compute the error between w and w;s in the Euclidean norm and
compare with the data error ¢ := ||y — ys||?
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5. In both cases compute the error between w and w;s in the Euclidean norm and
compare with the data error ¢ := ||y — ys||?

S
[
o
[
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5. In both cases compute the error between w and w;s in the Euclidean norm and
compare with the data error ¢ := ||y — ys||?

A\

=
1
S
Q§>
1
E
|
§>
N
-
‘ M
_|_
‘ M
|
| ¢
S
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5. In both cases compute the error between w and w;s in the Euclidean norm and
compare with the data error ¢ := ||y — ys||?

A A C R R € € €
W= ws={ . uw—wgu=\—+—=—ﬁ
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5. In both cases compute the error between w and w;s in the Euclidean norm and
compare with the data error ¢ := ||y — ys||?

A\

=
1
-
Q§>
1
B
|
§>
N
-
‘ M
+
‘ M
1
| ¢
S
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6. Explain why do you observe such a huge difference between the two cases when
c— 07

Hint: make a use of the SVD and use singular vectors you have obtained earlier.

d+1

W —wsl> =072 [(u®,y —ys)|°
j=1
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6. Explain why do you observe such a huge difference between the two cases when
c— 07

Hint: make a use of the SVD and use singular vectors you have obtained earlier.

d+1

W —ws> =072 |(u®,y — ys)|°
j=1

The smallest singular value is the most important as well as the scalar product!
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6. Explain why do you observe such a huge difference between the two cases when
c— 07

Hint: make a use of the SVD and use singular vectors you have obtained earlier.
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6. Explain why do you observe such a huge difference between the two cases when
c— 07

Hint: make a use of the SVD and use singular vectors you have obtained earlier.

First case y=(1,1)! yvs=(1—-¢e1+¢€)"
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6. Explain why do you observe such a huge difference between the two cases when
c— 07

Hint: make a use of the SVD and use singular vectors you have obtained earlier.

First case y=(1,D"  y=(O0-el4+e)" y—ys=e(l,—-1"'
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6. Explain why do you observe such a huge difference between the two cases when
c— 07

Hint: make a use of the SVD and use singular vectors you have obtained earlier.

First case y=(1,D"  y=(O0-el4+e)" y—ys=e(l,—-1"'

Second case y=(1,1)! yvs=(1+el+e€)
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6. Explain why do you observe such a huge difference between the two cases when
c— 07

Hint: make a use of the SVD and use singular vectors you have obtained earlier.

First case y=(1,D"  y=(O0-el4+e)" y—ys=e(l,—-1"'

Second case y=(1,1)' ys = (1 +e€,1 + €)' y— V5= — e(1,1)'
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6. Explain why do you observe such a huge difference between the two cases when
c— 07

Hint: make a use of the SVD and use singular vectors you have obtained earlier.

First case y—ys=¢€(1,—1)"
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6. Explain why do you observe such a huge difference between the two cases when
c— 07

Hint: make a use of the SVD and use singular vectors you have obtained earlier.

First case y—ys=¢€(1,—1)"

o | @m0 =0+2¢ o5(1+c)—2c
u - = o

2 \/4+(022—2)2’\/4+(622—2)2
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6. Explain why do you observe such a huge difference between the two cases when
c— 07

Hint: make a use of the SVD and use singular vectors you have obtained earlier.

First case y—ys=¢€(1,—1)"

o | @m0 =0+2¢ o5(1+c)—2c
u - = o

2 \/4+(022—2)2’\/4+(622—2)2

4O,y — 3.y = cor o5(1 —c)+2c  o37(14¢)—2c

J A+ =22 \[4+ (@3 -27
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6. Explain why do you observe such a huge difference between the two cases when
c— 07

Hint: make a use of the SVD and use singular vectors you have obtained earlier.

First case
o5(1—c)+2c o5(1+c¢)—2c

V4@ =27 \[4+ (0327

U9,y = y5) = €0y’
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6. Explain why do you observe such a huge difference between the two cases when
c— 07

Hint: make a use of the SVD and use singular vectors you have obtained earlier.

First case
o5(1—c)+2c o5(1+c¢)—2c

V4@ =27 \[4+ (0327

U9,y = y5) = €0y’

4¢ — 2co05

\/4+ (03 27

_ —1
— €0,
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6. Explain why do you observe such a huge difference between the two cases when
c— 07

Hint: make a use of the SVD and use singular vectors you have obtained earlier.

Second case y—ys=—e(1,1)T
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6. Explain why do you observe such a huge difference between the two cases when
c— 07

Hint: make a use of the SVD and use singular vectors you have obtained earlier.

Second case y—ys=—e(1,1)T

o | @m0 =0+2¢ o5(1+c)—2c
u - = o

2 \/4+(022—2)2’\/4+(622—2)2
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6. Explain why do you observe such a huge difference between the two cases when
c— 07

Hint: make a use of the SVD and use singular vectors you have obtained earlier.

Second case y—ys=—e(1,1)T

o | @m0 =0+2¢ o5(1+c)—2c
u - = o

2 \/4+(022—2)2’\/4+(622—2)2

o5(1 —¢) + 2c . o5(1 +¢) — 2c
V4@ =27 4+ (-2

<M(2),y — V5) = — 602_1

of
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6. Explain why do you observe such a huge difference between the two cases when
c— 07

Hint: make a use of the SVD and use singular vectors you have obtained earlier.

Second case

www.gmul.ac.uk n/QMUL y@QMUL




6. Explain why do you observe such a huge difference between the two cases when
c— 07

Hint: make a use of the SVD and use singular vectors you have obtained earlier.

Second case
o5(1—c)+2c  o5(1+c)—2c

_I_
\/4 + (63 — 2) \/4 + (63 — 2)

U,y —y;) = —eo;!

www.gmul.ac.uk n/QMUL y@QMUL




6. Explain why do you observe such a huge difference between the two cases when
c— 07

Hint: make a use of the SVD and use singular vectors you have obtained earlier.

Second case
o5(1—c)+2c  o5(1+c)—2c

_I_
\/4 + (63 — 2) \/4 + (63 — 2)

U,y —y;) = —eo;!

2
205

\/4+ (03 -2y

— —1
— €0,
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6. Explain why do you observe such a huge difference between the two cases when
c— 07

Hint: make a use of the SVD and use singular vectors you have obtained earlier.

Second case
o5(1—c)+2c  o5(1+c)—2c

_I_
\/4 + (63 — 2) \/4 + (63 — 2)

U,y —y;) = —eo;!

2
205

\/4+ (03 -2y

—1

20,

— 2€
\/4 + (62 — 22

of
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6. Explain why do you observe such a huge difference between the two cases when
c— 07

Hint: make a use of the SVD and use singular vectors you have obtained earlier.

4¢ — 2co5

\/4+ (03 -2y

First case (M(z),y — Y5> — 652_1

20,

€
\/4+ (03 -2y

Second case (u'®)y—ys)==-2
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6. Explain why do you observe such a huge difference between the two cases when
c— 07

Hint: make a use of the SVD and use singular vectors you have obtained earlier.

- 4c — 26622 —0
First case (M(z),y — y(;) — €0, ! I (u(z),y — y(s) ~ 02_1

\/4+ (03 -2y

20,

€
\/4+ (03 -2y

Second case (u'®)y—ys)==-2
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6. Explain why do you observe such a huge difference between the two cases when
c— 07

Hint: make a use of the SVD and use singular vectors you have obtained earlier.

. 2) _1 4c — 2C622 o.—0
First case (U, y — y(;) — €0, N (u(z),y — y(s) ~ 02_1
\/4+ (03 -2y
202 62_>O

Second case (u®,y — ys) == —2 2 5 (u®,y — Vs) ~ O,

€
\/4+ (03 -2y
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