
MTH786, Semester A, 2023/24 
Solutions of coursework 3 N. Perra

Problem 1. Below you are asked to prove several small facts about convexity leading to
a prove of the MSE function being convex.

1. Show that the sum of two convex functions is convex. Hint: use the definition of
convexity.

2. Prove that, for any convex function g : C ⊂ R → R, the function f(x) := ag(x) + b
is also convex. Here b ∈ R is a scalar, and a ∈ R+ is a positive scalar (i.e. a > 0).

3. Verify that the function h(w) := xw − y for fixed x ∈ R and y ∈ R satisfies

h(λw + (1− λ)v) = λh(w) + (1− λ)h(v) ,

for all w, v ∈ R and λ ∈ [0, 1].

4. Show that the function f(w) := g(h(w)), where g : R → R is some convex function
and h the function from Question 3, is convex.

5. Verify that the function g : R → R≥0 with g(x) := 1
2
x2 is convex.

6. Show that the simplified MSE function MSE : R → R≥0 with

MSE(w) =
1

2
(xw − y)2

is convex.

Hint: make us of Questions 1–5.

7. Prove that the general MSE function MSE : Rd+1 → R≥0 with

MSE(w) :=
1

2s
∥Xw − y∥2 ,

for a matrix X ∈ Rs×(d+1) and a vector y ∈ Rs, is convex.

Solutions:

1. We want to show that the sum of two convex functions is convex as well.

Let f, g, h : C → R such that for all x ∈ C we have h(x) = f(x)+ g(x), for

two convex functions f and g. Then we observe the following:
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∀x ∈ C, λ ∈ [0, 1]:

h(λx+ (1− λ)y) = f(λx+ (1− λ)y) + g(λx+ (1− λ)y)

≤ λf(x) + (1− λ)f(y) + λg(x) + (1− λ)g(y)

= λ [f(x) + g(x)] + (1− λ) [f(y) + g(y)]

= λh(x) + (1− λ)h(y)

Hence, the sum of two convex functions is also convex.

2. Again, we use the definition of convexity and show

f(λx+ (1− λ)y) = ag(λx+ (1− λ)y) + b

≤ aλg(x) + a(1− λ)g(y) + b

= aλg(x) + a(1− λ)g(y) + λb+ (1− λ)b

= λ (ag(x) + b) + (1− λ) (ag(y) + b)

= λf(x) + (1− λ)f(y) ,

for all x, y ∈ C and λ ∈ [0, 1].

3. We compute

h(λw + (1− λ)v) = xλw + x(1− λ)v − y

= λxw + (1− λ)xw − y

= λxw + (1− λ)xw − λy − (1− λ)y

= λ (xw − y) + (1− λ) (xv − y)

= λh(w) + (1− λ)h(v) ,

which proves the assertion.

4. For any convex function g and the function h from Exercise 3 we estimate

f(λw + (1− λ)v) = g(h(λw + (1− λ)v))

= g(λh(w) + (1− λ)h(v))

≤ λg(h(w)) + (1− λ)g(h(v))

= λf(w) + (1− λ)f(v) .

Thus, the composition g(h(w)) is also convex.

5. For the function g(x) := 1
2
x2 we estimate

2λg(x) + 2(1− λ)g(y)− 2g(λx+ (1− λ)y)

= λx2 + (1− λ)y2 − (λx+ (1− λ)y)2

= λx2 + (1− λ)y2 − λ2x2 − 2λ(1− λ)xy − (1− λ)2y2

= λ(1− λ)x2 + λ(1− λ)y2 − 2λ(1− λ)xy

= λ(1− λ)(x− y)2 ≥ 0 ,

since λ(1− λ) ≥ 0 for λ ∈ [0, 1], which implies

g(λx+ (1− λ)y) ≤ λg(x) + (1− λ)g(y) .

Hence, we have concluded that g is convex.



6. We verify this result by combining the results from Exercise 3, Exercise

4 and Exercise 5. We can write MSE(w) = g(h(w)), for h(w) := xw − y
and g(z) := 1

2
z2. From Exercise 5 we know that g is convex and from Exercise

4 we know that the composition g◦h is convex. Since this is equivalent

to the MSE, we already know that the MSE is convex.

7. We proceed in similar fashion as in the previous exercise. We point out

that the MSE can be written as MSE(w) = g(h(w)) for g(y) = 1
2s
∥z∥2 = 1

2s

∑s
i=1 |zi|2

and h(w) = Xw − y. Note that g is convex since the function x → x2

is convex (see Exercise 5) and since the sum of convex functions is also

convex (see Exercise 1). In the same way as in Exercise 3 we verify

h(λw + (1− λ)v) = λh(w) + (1− λ)h(v) ;

hence, MSE is a composition of a convex and an affine-linear function

and as a consequence of Exercise 4, MSE is convex.

Problem 2. Set up a linear regression problem of the form

ŵ = arg min
w∈R2

{
1

2s

3∑
i=1

|w(0) + w(1)x(i) − y(i)|2
}

, (1)

for data points (x(1), y(1)) with x(1) = −c and y(1) = 2, (x(2), y(2)) with x(2) = 0 and
y(2) = 2, and (x(3), y(3)) with x(3) = c and y(3) = 2, for some constant c > 0.

1. Derive the normal equation for this problem.

2. Solve the normal equations for your weights ŵ = (ŵ(0), ŵ(1))⊤.

3. Repeat the previous exercise, but this time assume you make an error in your
measurement. The new, perturbed measurements yδ read y

(1)
δ = 2 + ε, y

(2)
δ = 2 + ε

and y
(3)
δ = 2− ε.

4. Compute the error between ŵ and ŵδ in the Euclidean norm.

5. How does the error compare with the data error δ := ∥y − yδ∥?

Solutions:

1. The data matrix X for the points specified in the problem description

reads

X =

1 −c
1 0
1 c

 . (2)

From the lecture notes we know that the normal equation X⊤Xŵ = X⊤y

solves Problem (1). For X as defined in Equation (4) and y :=
(
2 2 2

)⊤
we then calculate (

3 0
0 2c2

)
ŵ =

(
1 1 1
−c 0 c

)
y

=

(
6
0

)
.



2. We easily solve the previous equation for ŵ and obtain

ŵ =

(
2
0

)
;

hence, ŵ0 = 2 and ŵ(1) = 0. We obtain a line with slope zero and a constant

translation of two.

3. Repeating the previous two exercises with the perturbed data

yδ =
(
2 + ε 2 + ε 2− ε

)⊤
yields the normal equation(
3 0
0 2c2

)
ŵδ =

(
1 1 1
−c 0 c

)
yδ

=

(
6 + ε
−2 c ε

)
,

with the solution

ŵδ =

(
2 + ε

3

− ε
c

)
.

4. The error in terms of the Euclidean norm reads

∥ŵ − ŵδ∥ =

√(
2−

(
2 +

ε

3

))2

+
(
0− ε

c

)2

=

√
ε2

9
+

ε2

c2
=

ε
√
9 + c2

3c

=
ε

c

√
1 +

( c
3

)2

>
ε

c
.

5. The error in reconstruction is dominated by the ratio ε/c. If c ≪ ε the

error can get potentially very large compared to the data error δ = ∥y−
yδ∥ = ε

√
3, which does not depend on c. Suppose ε = 1/100 and c = 1/1000,

then δ ≈ 0.01732 but ε/c = 10. Hence, the data error δ is amplified by

a factor larger than 577 in the reconstruction.

Problem 3. Let us consider a standard normal equation for a linear regression in dimensions
d × 1 (i.e. output is n = 1 dimensional). Let y and yδ be non-perturbed and perturbed
output data correspondingly.

∥ŵ − ŵδ∥2 =
d+1∑
j=1

σ−2
j

∣∣⟨u(j),y − yδ⟩
∣∣2

for two least-squares solutions ŵ and ŵδ with singular value decompositions

ŵ =
d+1∑
j=1

σ−1
j v(j)⟨u(j),y⟩ and ŵδ =

d+1∑
j=1

σ−1
j v(j)⟨u(j),yδ⟩ ,

where σj,u
(j),v(j) are singular values and right-/left- singular vectors of matrix X. Hint:

make use of the fact that singular vectors are orthonormal.

Solutions:



1. Based on the singular vector decomposition representations of ŵ and ŵδ,

we have

∥ŵ − ŵδ∥2 =

∥∥∥∥∥
d+1∑
j=1

σ−1
j v(j)⟨u(j), (y − yδ)⟩

∥∥∥∥∥
2

=

∥∥∥∥∥σ−1
1 v(1)⟨u(1), (y − yδ)⟩+

d+1∑
j=2

σ−1
j v(j)⟨u(j), (y − yδ)⟩

∥∥∥∥∥
2

=
∥∥σ−1

1 v(1)⟨u(1), (y − yδ)⟩
∥∥2

− 2σ−1
1 ⟨u(1), (y − yδ)⟩

〈
v(1),

d+1∑
j=2

σ−1
j v(j)⟨u(j), (y − yδ)⟩

〉

+

∥∥∥∥∥
d+1∑
j=2

σ−1
j v(j)⟨u(j), (y − yδ)⟩

∥∥∥∥∥
2

= σ−2
1

∣∣⟨u(1), (y − yδ)⟩
∣∣2 ∥v(1)∥2

− 2σ−1
1 ⟨u(1), (y − yδ)⟩

d+1∑
j=2

σ−1
j

〈
v(1),v(j)

〉
⟨u(j), (y − yδ)⟩

+

∥∥∥∥∥
d+1∑
j=2

σ−1
j v(j)⟨u(j), (y − yδ)⟩

∥∥∥∥∥
2

= σ−2
1

∣∣⟨u(1), (y − yδ)⟩
∣∣2 + ∥∥∥∥∥

d+1∑
j=2

σ−1
j v(j)⟨u(j), (y − yδ)⟩

∥∥∥∥∥
2

.

Here, the last equality follows from the orthonormality of the singular

vectors v(j), which implies ∥v(1)∥2 = 1 and ⟨v(1),v(j)⟩ = 0 for all j ̸= 1.
Recursively (or by induction) we can repeat the same argument for the

squared norm of the remaining sum, and, thus, verify the statement.

Problem 4. Set up a linear regression problem of the form

ŵ = arg min
w∈R2

{
1

2s

2∑
i=1

|w(0) + w(1)x(i) − y(i)|2
}

, (3)

for data points (x(1), y(1)) with x(1) = 1− c and y(1) = 1, (x(2), y(2)) with x(2) = 1 + c and
y(2) = 1 for some constant c > 0.

1. Derive the normal equation for this problem.

2. For the matrix X you have set up find its singular values and left-/right- singular
vectors.

3. Solve the normal equations for your weights ŵ = (ŵ(0), ŵ(1))⊤.

4. Repeat the previous exercise, but this time assume you make an error in your
measurement. Consider two cases of the new, perturbed measurements

� yδ reads y
(1)
δ = 1− ε, y

(2)
δ = 1 + ε.



� yδ reads y
(1)
δ = 1 + ε, y

(2)
δ = 1 + ε.

5. In both cases compute the error between ŵ and ŵδ in the Euclidean norm and
compare with the data error δ := ∥y − yδ∥?

6. Explain why do you observe such a huge difference between the two cases when
c → 0?

Hint: make a use of the SVD and use singular vectors you have obtained earlier.

Solutions:

1. The data matrix X for the points specified in the problem description

reads

X =

(
1 1− c
1 1 + c

)
. (4)

From the lecture notes we know that the normal equation X⊤Xŵ = X⊤y

solves Problem (1). For X as defined in Equation (4) and y :=
(
1 1

)⊤
we then calculate (

2 2
2 2 + 2c2

)
ŵ =

(
1 1

1− c 1 + c

)
y

=

(
2
2

)
.

2. Singular value of matrix X can be found as eigenvalues of matrix X⊤X.

Solving

det
(
X⊤X− σ2I

)
= 0,

one obtains

σ4 −
(
4 + 2c2

)
σ2 + 4c2 = 0.

Solutions of the above are{
σ1 =

√
c2 + 2 +

√
c4 + 4,

σ2 =
√
c2 + 2−

√
c4 + 4

The right singular vectors of matrix X are eigenvectors of X⊤X. These

can be found by solving

X⊤Xv(j) = σ2
jv

(j) ⇔
(
2− σ2

j

)
v
(j)
1 + 2v

(j)
2 = 0 ⇒ v

(j)
2 =

σ2
j − 2

2
v
(j)
1

v(j) =

 2√
4 +

(
σ2
j − 2

)2 σ2
j − 2√

4 +
(
σ2
j − 2

)2
⊤

.

For the left singular vectors we first need to calculate the product XX⊤

and then find corresponding eigenvectors. It is easy to check that

XX⊤ =

(
2− 2c+ c2 2− c2

2− c2 2 + 2c+ c2

)



and the left singular vectors then solve

(
2− 2c+ c2 − σ2

j

)
u
(j)
1 +

(
2− c2

)
u
(j)
2 = 0 ⇒ u

(j)
2 =

σ2
j − 2− c2 + 2c

2− c2
u
(j)
1 ,

u(j) =

 2− c2√
(2− c2)2 +

(
σ2
j − c2 − 2 + 2c

)2 σ2
j − c2 − 2 + 2c√

(2− c2)2 +
(
σ2
j − c2 − 2 + 2c

)2
⊤

.

Remark: the expressions are quite nasty, but we will work with these

in small c case only. If c is small, then σ2
1 ≈ 4 + c2, σ2

2 ≈ c2 and

v(1) ≈
(

1√
2

1√
2

)⊤

, v(2) ≈
(

1√
2

− 1√
2

)⊤

.

u(1) ≈
(

1√
2

1√
2

)⊤

, u(2) ≈
(

1√
2

− 1√
2

)⊤

.

3. We easily solve the normal equation for ŵ and obtain

ŵ =

(
1
0

)
;

hence, ŵ0 = 1 and ŵ1 = 0. We obtain a line with slope zero and a constant

translation of two.

4. � Repeating the previous exercise with the perturbed data yδ =
(
1− ε 1 + ε

)⊤
yields the normal equation(

2 2
2 2 + 2c2

)
ŵδ =

(
1 1

1− c 1 + c

)
yδ

=

(
2

2 + 2 c ε

)
,

with the solution

ŵδ =

(
1− ε

c
ε
c

)
.

� For the perturbed data yδ =
(
1 + ε 1 + ε

)⊤
the normal equation takes

the form (
2 2
2 2 + 2c2

)
ŵδ =

(
1 1

1− c 1 + c

)
yδ

=

(
2 + 2 ε
2 + 2 ε

)
,

with the solution

ŵδ =

(
1 + ε
0

)
.



5. � The error in terms of the Euclidean norm reads

∥ŵ − ŵδ∥ =

√(ε
c

)2

+
(ε
c

)2

=
√
2
ε

c
.

� In the second case it reads

∥ŵ − ŵδ∥ =
√
ε2 + 02 = ε.

The data error in both cases is equal to
√
2ε. One can see that in the

second case the error in ŵ is just the data error divided by
√
2. So

it is of the same magnitude. While in the first case we can have a much

higher error if c is small enough.

6. As we have seen in the first exercise, the error can be written as

∥ŵ − ŵδ∥2 =
d+1∑
j=1

σ−2
j

∣∣⟨u(2),y − yδ⟩
∣∣2 .

The term that can bring this error to a high value corresponds to the

lowest singular value, i.e. σ2 in our case. To make this term large one

should have large
〈
u(2), (y − yδ)

〉
. Thus the error in ŵ is bigger if the

data perturbation is parallel to u(2). Now one can check that in the first

case we have a perturbation y−yδ = ε (−1 1)⊤ that is parallel to u(2),

while in the second case one has a perturbation y − yδ = ε (1 1)⊤ that

is just orthogonal to u(2).




