WEEK 4 NOTES

1. The wave equation on the real line

We continue the theory wave equation

$$
\begin{equation*}
U_{t t}=c^{2} U_{x x}, \quad c \equiv \sqrt{\frac{F}{\rho}} \tag{1.1}
\end{equation*}
$$

on the real line so that there are no boundary conditions -physically, this means that we consider an infinitely long vibrating string. This is a useful idealisation.
1.1. Solution in terms of initial conditions. Now, suppose one has the initial conditions

$$
U(x, 0)=f(x), \quad U_{t}(x, 0)=g(x)
$$

One needs to two initial conditions as the equation is second order. At $t=0$ the general solution deduced last week gives

$$
\begin{equation*}
U(x, 0)=G(x)+F(x)=f(x) \tag{1.2}
\end{equation*}
$$

Moreover, a direct computation using the chain rule gives

$$
U_{t}(x, t)=c F^{\prime}(x+c t)-c G^{\prime}(x-c t)
$$

so that

$$
\begin{equation*}
U_{t}(x, 0)=c F^{\prime}(x)-c G^{\prime}(x)=g(x) \tag{1.3}
\end{equation*}
$$

Differentiating (1.2) with respect to x one obtains the system of equations

$$
\begin{aligned}
& f^{\prime}(x)=G^{\prime}(x)+F^{\prime}(x) \\
& g(x)=c F^{\prime}(x)-c G^{\prime}(x)
\end{aligned}
$$

Adding and subtracting these equations one finds that

$$
\begin{aligned}
& F^{\prime}(x)=\frac{1}{2 c}\left(g(x)+c f^{\prime}(x)\right) \\
& G^{\prime}(x)=\frac{1}{2 c}\left(c f^{\prime}(x)-g(x)\right)
\end{aligned}
$$

Integrating the first of these equations with respect to x one finds that

$$
\begin{aligned}
F(x)-F(0) & =\int_{0}^{x} \frac{1}{2 c}\left(g(s)+c f^{\prime}(s)\right) d s \\
& =\frac{1}{2}(f(x)-f(0))+\frac{1}{2 c} \int_{0}^{x} g(s) d s
\end{aligned}
$$

where in the second line we have used the Fundamental theorem of Calculus. Moreover, using this last expression one has that

$$
\begin{aligned}
G(x) & =f(x)-F(x) \\
& =f(x)-\frac{1}{2} f(x)+\frac{1}{2} f(0)-\frac{1}{2 c} \int_{0}^{x} g(s) d s-F(0) \\
& =\frac{1}{2} f(x)+\frac{1}{2} f(0)-\frac{1}{2 c} \int_{0}^{x} g(s) d s-F(0)
\end{aligned}
$$

It follows then that

$$
\begin{aligned}
U(x, t)= & G(x-c t)+F(x+c t) \\
= & \frac{1}{2} f(x-c t)+\frac{1}{2} f(0)-\frac{1}{2 c} \int_{0}^{x-c t} g(s) d s-F(0) \\
& \quad+\frac{1}{2} f(x+c t)-\frac{1}{2} f(0)+\frac{1}{2 c} \int_{0}^{x+c t} g(s) d s+F(0)
\end{aligned}
$$

Simplifying and rearranging one obtains the expression

$$
\begin{equation*}
U(x, t)=\frac{1}{2}(f(x+c t)+f(x-c t))+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(s) d s \tag{1.4}
\end{equation*}
$$

which is known as D'Alembert's solution.
Note. Observe that by prescribing initial conditions one obtains a unique solution.
Example 1.1. The wave equation $U_{t t}=c^{2} U_{x x}$ with initial position $U(x, 0)=\sin x$ and initial velocity $U_{t}(x, 0)=0$ is

$$
\begin{aligned}
U(x, t) & =\frac{1}{2}[\sin (x+c t)+\sin (x-c t)] \\
& =\sin x \cos (c t)
\end{aligned}
$$

1.2. Where does the change of variables come from? To explain the change of variables

$$
\begin{equation*}
u=x-c t, \quad v=x+c t . \tag{1.5}
\end{equation*}
$$

one observes that the wave equation can be rewritten as

$$
U_{t t}-c^{2} U_{x x}=\left(\frac{\partial}{\partial t}-c \frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right) U=0
$$

Letting

$$
W \equiv\left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right) U
$$

then

$$
\left(\frac{\partial}{\partial t}-c \frac{\partial}{\partial x}\right) W=\frac{\partial W}{\partial t}-c \frac{\partial W}{\partial x}=W_{t}-c W_{x}=0
$$

Thus, W satisfies a first order pde with constant coefficients -we have already studied the solutions to this equation. The characteristics are lines with negative slope $d t / d x=-1 / c$ (negative slope) so that

$$
x+c t=\text { constant } .
$$

Once we know W one has to solve the equation

$$
U_{t}+c U_{x}=W
$$

which is, again, a first order pde with constant coefficients -observe, however, that the equation is inhomogeneous. The slope of the characteristics is $d t / d x=1 / c$ (positive slope) so that

$$
x-c t=\text { constant } .
$$

Note. Thus, the wave equation has two sets of characteristics -that is, there is information travelling in two directions: to the left and to the right.
1.3. Interpretation of D'Alembert's solution. Formula (1.4) can be read as saying

$$
\begin{aligned}
& U(x, t)=(\text { average of } U(x, 0) \text { on } x-c t \text { and } x+c t) \\
&+\left(\text { average of } U_{t}(x, 0) \text { over the interval }[x-c t, x+c t]\right)
\end{aligned}
$$

Hence, $U(x, t)$ only depends on the initial conditions on the interval $[x-c t, x+c t]$-see the figure below.

The region in the (x, t) diagram that have an influence in the value of $U(x, t)$ at (x, t) is called the domain of dependence of (x, t).

Note. This has connections with Relativity (MTH6132) —information cannot travel at infinite speed.

Conversely, given a point (x, t) (event) it influences the region shown below:

This region is called the domain of influence.
Also, assume that $g(x)=0$ and that $f(x)$ has the shape of a bump:

Then, at later times the solution looks like:

That is, one has two bumps, half the size of the initial one moving in opposite directions. The above situation can be described in a diagram in the (x, t) plane as follows:

2. SOME INVARIANT PROPERTIES OF WAVE EQUATIONS ON THE REAL LINE

From a given solution $U(x, t)$ to the wave equation (1.1) on the real line $x \in \mathbb{R}$, we can construct new solutions to the equation

Proposition 2.1. If $U(x, t)$ is a solution to the wave equation (1.1) on the real line, so are

$$
\begin{aligned}
V(x, t) & =U(\alpha x, \alpha t), \text { for any } \alpha \in \mathbb{R}, \\
W(x, t) & =U(x,-t)
\end{aligned}
$$

Proposition 2.2. Let $U_{1}(x, t)$ solves the the advection equation $\left(\frac{\partial}{\partial t}-c \frac{\partial}{\partial x}\right) U_{1}=0$ on the real line,
and $U_{2}(x, t)$ solves the the advection equation $\left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right) U_{2}=0$ on the real line.
Then both U_{1} and U_{2} solves the wave equation (1.1) on the real line.
We will leave it as an exercise to show these 2 propositions. Problem sets also contains some similar questions about the invariant properties.

3. Conservation of energy

Consider the wave equation on the line:

$$
\begin{aligned}
& U_{t t}=c^{2} U_{x x}, \quad x \in \mathbb{R} \\
& U(x, 0)=f(x), \quad U_{t}(x, 0)=g(x)
\end{aligned}
$$

where $f(x), g(x)=0$ for $|x|>R$, with R some big number. This means that $f(x)$ and $g(x)$ vanish for large $|x|$-functions of this type are said to have compact support.
3.1. Derivation. Multiply now the wave equation by U_{t} on both sides:

$$
U_{t} U_{t t}=c^{2} U_{x x} U_{t}
$$

Observing that

$$
U_{t} U_{t t}=\frac{1}{2} \frac{\partial}{\partial t}\left(U_{t}^{2}\right)
$$

one has then that

$$
\frac{1}{2} \frac{\partial}{\partial t}\left(U_{t}^{2}\right)-c^{2} U_{x x} U_{t}=0
$$

Integrating over the real line one then gets that

$$
\begin{aligned}
0 & =\int_{\infty}^{-\infty}\left(\frac{1}{2} \frac{\partial}{\partial t}\left(U_{t}^{2}\right)-c^{2} U_{x x} U_{t}\right) d x \\
& =\frac{d}{d t} \int_{-\infty}^{\infty} \frac{1}{2} U_{t}^{2} d x-c^{2} \int_{-\infty}^{\infty} U_{x x} U_{t} d x \\
& =\frac{d}{d t}\left(\int_{-\infty}^{\infty} \frac{1}{2} U_{t}^{2} d x\right)-\left(\left.U_{t} U_{x}\right|_{-\infty} ^{\infty}-c^{2} \int_{-\infty}^{\infty} U_{x} U_{x t} d x\right) \\
& =\frac{d}{d t} \int_{-\infty}^{\infty} \frac{1}{2} U_{t}^{2} d x+c^{2} \int_{-\infty}^{\infty} U_{x} U_{x t} d x
\end{aligned}
$$

where to pass from the second to the third line we have used integration by parts and in the third line that $U(x, t)=0$ if $|x| \rightarrow \infty$. Finally, observing that

$$
U_{x} U_{x t}=\frac{1}{2} \frac{\partial}{\partial t}\left(U_{x}^{2}\right)
$$

one concludes that

$$
0=\frac{d}{d t} \int_{-\infty}^{\infty} \frac{1}{2} U_{t}^{2} d x+c^{2} \int_{-\infty}^{\infty} \frac{1}{2} \frac{\partial}{\partial t}\left(U_{x}^{2}\right) d x
$$

so that

$$
\frac{d}{d t}\left(\frac{1}{2} \int_{-\infty}^{\infty}\left(U_{t}^{2}+c^{2} U_{x}^{2}\right) d x\right)=0
$$

In other words, the quantity in brackets is constant in time. This calculation suggests the following definition:

Definition 3.1. The energy $E[U](t)$ of a solution to the wave equation is given by

$$
E[U](t) \equiv \frac{1}{2} \int_{-\infty}^{\infty}\left(U_{t}^{2}+c^{2} U_{x}^{2}\right) d x
$$

Hence, the previous calculations show that

$$
\frac{d}{d t} E[U](t)=0
$$

that is, the energy is conserved -i.e. independent of t (law of conservation of total energy). The term $\int U_{t}^{2} / 2$ is called the kinetic energy and $\int \frac{c^{2}}{2} U_{x}^{2}$ the potential energy.
3.2. An application: uniqueness of solutions. In this subsection we show how the total energy can be used to show that a solution to the initial value problem

$$
\begin{aligned}
& U_{t t}-c^{2} U_{x x}=0, \quad x \in \mathbb{R} \\
& U(x, 0)=f(x), \quad U_{t}(x, 0)=g(x)
\end{aligned}
$$

if it exists, then it must be unique.
Suppose one has 2 solutions U_{1} and U_{2} an let $W \equiv U_{1}-U_{2}$. As the wave equation is linear one has that

$$
\begin{aligned}
& W_{t t}-c^{2} W_{x x}=0 \\
& W(x, 0)=0, \quad W_{t}(x, 0)=0
\end{aligned}
$$

The energy of W can be directly computed to be

$$
\begin{aligned}
E[W](t) & =E[W](0) \\
& =\frac{1}{2} \int_{-\infty}^{\infty}\left(W_{t}^{2}(x, 0)+c^{2} W_{x}^{2}(x, 0)\right) d x \\
& =0
\end{aligned}
$$

This means, in particular, that

$$
\int_{-\infty}^{\infty}\left(W_{t}^{2}(x, t)+c^{2} W_{x}^{2}(x, t)\right) d x=0
$$

but $W_{t}^{2} \geq 0, W_{x}^{2} \geq 0$ so that, in order for the integral to vanish one actually needs

$$
W_{t}(x, t)=0, \quad W_{x}(x, t)=0
$$

Thus $W(x, t)$ is constant for all x, t. But $W(x, 0)=0$ so that $W(x, t)=0$. Hence, $U_{1}=U_{2}$-that is, the solution is unique.

