
WEEK 4 NOTES

1. THE WAVE EQUATION ON THE REAL LINE

We continue the theory wave equation

(1.1) Utt = c2Uxx, c ≡

√
F

ρ
.

on the real line so that there are no boundary conditions —physically, this means that we
consider an infinitely long vibrating string. This is a useful idealisation.

1.1. Solution in terms of initial conditions. Now, suppose one has the initial conditions

U(x, 0) = f(x), Ut(x, 0) = g(x).

One needs to two initial conditions as the equation is second order. At t = 0 the general
solution deduced last week gives

(1.2) U(x, 0) = G(x) + F (x) = f(x).

Moreover, a direct computation using the chain rule gives

Ut(x, t) = cF ′(x+ ct)− cG′(x− ct),

so that

(1.3) Ut(x, 0) = cF ′(x)− cG′(x) = g(x)

Differentiating (1.2) with respect to x one obtains the system of equations

f ′(x) = G′(x) + F ′(x),

g(x) = cF ′(x)− cG′(x).

Adding and subtracting these equations one finds that

F ′(x) =
1

2c

(
g(x) + cf ′(x)

)
,

G′(x) =
1

2c

(
cf ′(x)− g(x)

)
.

Integrating the first of these equations with respect to x one finds that

F (x)− F (0) =

∫ x

0

1

2c

(
g(s) + cf ′(s)

)
ds

=
1

2

(
f(x)− f(0)

)
+

1

2c

∫ x

0

g(s)ds,

1
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where in the second line we have used the Fundamental theorem of Calculus. Moreover,
using this last expression one has that

G(x) = f(x)− F (x)

= f(x)− 1

2
f(x) +

1

2
f(0)− 1

2c

∫ x

0

g(s)ds− F (0)

=
1

2
f(x) +

1

2
f(0)− 1

2c

∫ x

0

g(s)ds− F (0).

It follows then that

U(x, t) = G(x− ct) + F (x+ ct)

=
1

2
f(x− ct) +

1

2
f(0)− 1

2c

∫ x−ct

0

g(s)ds− F (0)

+
1

2
f(x+ ct)− 1

2
f(0) +

1

2c

∫ x+ct

0

g(s)ds+ F (0).

Simplifying and rearranging one obtains the expression

(1.4) U(x, t) =
1

2

(
f(x+ ct) + f(x− ct)

)
+

1

2c

∫ x+ct

x−ct

g(s)ds,

which is known as D’Alembert’s solution.

Note. Observe that by prescribing initial conditions one obtains a unique solution.

Example 1.1. The wave equation Utt = c2Uxx with initial position U(x, 0) = sinx and
initial velocity Ut(x, 0) = 0 is

U(x, t) =
1

2
[sin(x+ ct) + sin(x− ct)]

= sinx cos(ct).

1.2. Where does the change of variables come from? To explain the change of variables

u = x− ct, v = x+ ct.(1.5)

one observes that the wave equation can be rewritten as

Utt − c2Uxx =

(
∂

∂t
− c

∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
U = 0.

Letting

W ≡
(

∂

∂t
+ c

∂

∂x

)
U,

then (
∂

∂t
− c

∂

∂x

)
W =

∂W

∂t
− c

∂W

∂x
= Wt − cWx = 0.

Thus, W satisfies a first order pde with constant coefficients —we have already studied the
solutions to this equation. The characteristics are lines with negative slope dt/dx = −1/c
(negative slope) so that

x+ ct = constant.
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t

x

Once we know W one has to solve the equation

Ut + cUx = W

which is, again, a first order pde with constant coefficients —observe, however, that the
equation is inhomogeneous. The slope of the characteristics is dt/dx = 1/c (positive
slope) so that

x− ct = constant.

t

x

Note. Thus, the wave equation has two sets of characteristics —that is, there is information
travelling in two directions: to the left and to the right.

1.3. Interpretation of D’Alembert’s solution. Formula (1.4) can be read as saying

U(x, t) =
(
average of U(x, 0) on x− ct and x+ ct

)
+
(
average of Ut(x, 0) over the interval [x− ct, x+ ct]

)
.

Hence, U(x, t) only depends on the initial conditions on the interval [x− ct, x+ ct] —see
the figure below.
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t

x

(x,t)

x+ctx-ct

domain of 
dependence

The region in the (x, t) diagram that have an influence in the value of U(x, t) at (x, t)
is called the domain of dependence of (x, t).

Note. This has connections with Relativity (MTH6132) —information cannot travel at
infinite speed.

Conversely, given a point (x, t) (event) it influences the region shown below:

t

x

(x,t)

domain of 
influence

This region is called the domain of influence.
Also, assume that g(x) = 0 and that f(x) has the shape of a bump:

x0 x1

U(x,0)=f(x)

Then, at later times the solution looks like:
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x0-ct x1-ct x0+ct x1+ct

f(x+ct) f(x-ct)

That is, one has two bumps, half the size of the initial one moving in opposite directions.
The above situation can be described in a diagram in the (x, t) plane as follows:

x0 x1

f(x+ct)/2 f(x-ct)/2

U(x,t)=0

U(x,t)=0U(x,t)=0

bump

2. SOME INVARIANT PROPERTIES OF WAVE EQUATIONS ON THE REAL LINE

From a given solution U(x, t) to the wave equation (1.1) on the real line x ∈ R, we can
construct new solutions to the equation

Proposition 2.1. If U(x, t) is a solution to the wave equation (1.1) on the real line, so are

V (x, t) = U(αx, αt), for any α ∈ R,
W (x, t) = U(x,−t).

Proposition 2.2. Let U1(x, t) solves the the advection equation ( ∂
∂t − c ∂

∂x )U1 = 0 on the
real line,
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and U2(x, t) solves the the advection equation ( ∂
∂t + c ∂

∂x )U2 = 0 on the real line.
Then both U1 and U2 solves the wave equation (1.1) on the real line.

We will leave it as an exercise to show these 2 propositions. Problem sets also contains
some similar questions about the invariant properties.

3. CONSERVATION OF ENERGY

Consider the wave equation on the line:

Utt = c2Uxx, x ∈ R
U(x, 0) = f(x), Ut(x, 0) = g(x),

where f(x), g(x) = 0 for |x| > R, with R some big number. This means that f(x) and
g(x) vanish for large |x| —functions of this type are said to have compact support.

3.1. Derivation. Multiply now the wave equation by Ut on both sides:

UtUtt = c2UxxUt.

Observing that

UtUtt =
1

2

∂

∂t

(
U2
t

)
,

one has then that
1

2

∂

∂t

(
U2
t

)
− c2UxxUt = 0.

Integrating over the real line one then gets that

0 =

∫ −∞

∞

(
1

2

∂

∂t

(
U2
t

)
− c2UxxUt

)
dx

=
d

dt

∫ ∞

−∞

1

2
U2
t dx− c2

∫ ∞

−∞
UxxUtdx

=
d

dt

(∫ ∞

−∞

1

2
U2
t dx

)
−

(
UtUx

∣∣∣∣∞
−∞

− c2
∫ ∞

−∞
UxUxtdx

)

=
d

dt

∫ ∞

−∞

1

2
U2
t dx+ c2

∫ ∞

−∞
UxUxtdx,

where to pass from the second to the third line we have used integration by parts and in the
third line that U(x, t) = 0 if |x| → ∞. Finally, observing that

UxUxt =
1

2

∂

∂t
(U2

x),

one concludes that

0 =
d

dt

∫ ∞

−∞

1

2
U2
t dx+ c2

∫ ∞

−∞

1

2

∂

∂t
(U2

x)dx,

so that
d

dt

(
1

2

∫ ∞

−∞

(
U2
t + c2U2

x

)
dx

)
= 0.

In other words, the quantity in brackets is constant in time. This calculation suggests the
following definition:
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Definition 3.1. The energy E[U ](t) of a solution to the wave equation is given by

E[U ](t) ≡ 1

2

∫ ∞

−∞

(
U2
t + c2U2

x

)
dx.

Hence, the previous calculations show that
d

dt
E[U ](t) = 0,

that is, the energy is conserved —i.e. independent of t (law of conservation of total
energy). The term

∫
U2
t /2 is called the kinetic energy and

∫
c2

2 U
2
x the potential energy.

3.2. An application: uniqueness of solutions. In this subsection we show how the total
energy can be used to show that a solution to the initial value problem

Utt − c2Uxx = 0, x ∈ R
U(x, 0) = f(x), Ut(x, 0) = g(x)

if it exists, then it must be unique.

Suppose one has 2 solutions U1 and U2 an let W ≡ U1 − U2. As the wave equation is
linear one has that

Wtt − c2Wxx = 0,

W (x, 0) = 0, Wt(x, 0) = 0.

The energy of W can be directly computed to be

E[W ](t) = E[W ](0)

=
1

2

∫ ∞

−∞

(
W 2

t (x, 0) + c2W 2
x (x, 0)

)
dx,

= 0.

This means, in particular, that∫ ∞

−∞

(
W 2

t (x, t) + c2W 2
x (x, t)

)
dx = 0,

but W 2
t ≥ 0, W 2

x ≥ 0 so that, in order for the integral to vanish one actually needs

Wt(x, t) = 0, Wx(x, t) = 0.

Thus W (x, t) is constant for all x, t. But W (x, 0) = 0 so that W (x, t) = 0. Hence,
U1 = U2 —that is, the solution is unique.


