WEEK 4 NOTES

1. THE WAVE EQUATION ON THE REAL LINE

We continue the theory wave equation

(1.1) Uy = PUyy, czﬂg.

on the real line so that there are no boundary conditions —physically, this means that we
consider an infinitely long vibrating string. This is a useful idealisation.

1.1. Solution in terms of initial conditions. Now, suppose one has the initial conditions

U(:L’,O) :f(x)’ Ut(l',()) :g((L').

One needs to two initial conditions as the equation is second order. At¢ = 0 the general
solution deduced last week gives

(1.2) U(z,0) = G(z) + F(x) = f(z).
Moreover, a direct computation using the chain rule gives
Ui(z,t) = cF'(z + ct) — ¢G'(x — ct),
so that
(1.3) Ui(z,0) = cF'(z) — ¢G'(z) = g(x)
Differentiating (1.2) with respect to = one obtains the system of equations

f'(@) =G (x) + F'(x),
g(x) = cF'(z) — G’ (2).

Adding and subtracting these equations one finds that

F/(w) = 5 (9@) + cf (@),

1
G (2) = o (ef'(2) — g()).
c
Integrating the first of these equations with respect to x one finds that

F(z)—F(0) = /Om %(g(s) +cf'(s))ds

= 5 @) = 70) + - [ atoyis
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where in the second line we have used the Fundamental theorem of Calculus. Moreover,
using this last expression one has that

G(z) = f(x) *F(w)

— @) = 37@) + 3£0) = 5. [ gte)ds — F(0)
1
= f() —%Ogs)dsfF 0).
It follows then that
U(z,t) =Gz —ct) + F(z + ct)
—3lla—a)+ 310 =5 [ gl FO)

Simplifying and rearranging one obtains the expression

1 1 x+ct
(1.4) Uz, t) = g(f(x +et)+ f(z—ct)) + 2—6/ g(s)ds,

which is known as D’Alembert’s solution.
Note. Observe that by prescribing initial conditions one obtains a unique solution.

Example 1.1. The wave equation Uy, = c2U,, with initial position U (z,0) = sinx and
initial velocity Uy (z,0) = 0 is

U(z,t) :%[sin(ac + ct) + sin(z — ct)]
=sin z cos(ct).
1.2. Where does the change of variables come from? To explain the change of variables
(1.5) u=ux—ct, v=2x+ct.

one observes that the wave equation can be rewritten as

0 0 0 0
¢ Yae (3t cax> (815 +cax) v=0

Letting
0 0
W= — | U
<6t * Cax) ’
then
0 8 ow ow

Thus, W satisfies a first order pde with constant coefficients —we have already studied the
solutions to this equation. The characteristics are lines with negative slope dt/dx = —1/c

(negative slope) so that

T + ct = constant.
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Once we know W one has to solve the equation

Ut+CUI:W

which is, again, a first order pde with constant coefficients —observe, however, that the
equation is inhomogeneous. The slope of the characteristics is dt/dxz = 1/c (positive
slope) so that

x — ct = constant.

Note. Thus, the wave equation has two sets of characteristics —that is, there is information
travelling in two directions: to the left and to the right.

1.3. Interpretation of D’Alembert’s solution. Formula (1.4) can be read as saying

U(z,t) = (average of U(z,0) onz — ct and x + ct)
+ (average of Uy(, 0) over the interval [z — ct, x + ct]).

Hence, U (x,t) only depends on the initial conditions on the interval [x — ct, x + ct] —see
the figure below.



4 WEEK 4 NOTES

(x,t)

X-ct X+ct X

The region in the (x,t) diagram that have an influence in the value of U(x,t) at (z, )
is called the domain of dependence of (z, t).

Note. This has connections with Relativity (MTHG6132) —information cannot travel at
infinite speed.

Conversely, given a point (z, t) (event) it influences the region shown below:

(x,t)

This region is called the domain of influence.
Also, assume that g(x) = 0 and that f(z) has the shape of a bump:

U(x,0)=f(x)

Then, at later times the solution looks like:
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f(x+ct) f(x-ct)
_—
: : f :
Xo-Ct X;-ct Xot+ct X;+ct

That is, one has two bumps, half the size of the initial one moving in opposite directions.
The above situation can be described in a diagram in the (x, ¢) plane as follows:

f(x+ct)/2

f(x-ct)/2

U(x,t)=0

Xo \ X3
bump
2. SOME INVARIANT PROPERTIES OF WAVE EQUATIONS ON THE REAL LINE

From a given solution U (z, t) to the wave equation (1.1) on the real line « € R, we can
construct new solutions to the equation

Proposition 2.1. IfU(x,t) is a solution to the wave equation (1.1) on the real line, so are
V(z,t) = U(ax,at), for any a € R,
W(z,t) =U(x,—t).
Proposition 2.2. Ler Uy (x,t) solves the the advection equation (% - c%)U 1 = 0on the
real line,



6 WEEK 4 NOTES
and Us(z, t) solves the the advection equation (% + c%)Ug = 0 on the real line.
Then both Uy and Us solves the wave equation (1.1) on the real line.
We will leave it as an exercise to show these 2 propositions. Problem sets also contains
some similar questions about the invariant properties.
3. CONSERVATION OF ENERGY
Consider the wave equation on the line:
U = Upy, reR
U(J?,O) :f(I), Ut(it,()) :g(x)a

where f(z), g(x) = 0 for |z| > R, with R some big number. This means that f(z) and
g(x) vanish for large |x| —functions of this type are said to have compact support.

3.1. Derivation. Multiply now the wave equation by U; on both sides:
UiUy = CQUm;EUt-
Observing that
UUy = -+ (U}
Yt = 55 (U?),

one has then that

Lo
20t
Integrating over the real line one then gets that

/10
_d R 5 [
= a/_oo §Ut dr —c /_OO U, Uidx
d 1, e 5 [
= % . §Ut dx | — UtUI . —C . UIUxtdl'
1 (oo}
— §Ut2dsc+c2 / U, Ugidz,

d oo
Cdt

U?) = Uz Uy = 0.

— o0
where to pass from the second to the third line we have used integration by parts and in the
third line that U (x,t) = 0 if |z| — oc. Finally, observing that

one concludes that
_d R o [T10
so that
d (1 [~ 2 2772

In other words, the quantity in brackets is constant in time. This calculation suggests the
following definition:
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Definition 3.1. The energy E[U](t) of a solution to the wave equation is given by

1 o0
E[U)(t) = 5/ (U + 2U2)dx.
Hence, the previous calculations show that
d
—FE|U|(t) =0
SEU]() =0,

that is, the energy is conserved —i.e. independent of ¢ (law of conservation of total
energy). The term [ U?/2 is called the Kinetic energy and [ %Uﬁ the potential energy.

3.2. An application: uniqueness of solutions. In this subsection we show how the total
energy can be used to show that a solution to the initial value problem

Upt — Uyy = 0, r€eR

U(z,0) = f(z),  Ud(x,0) = g(x)
if it exists, then it must be unique.

Suppose one has 2 solutions U; and U an let W = U; — Us. As the wave equation is
linear one has that
th - CQWII = 07
W(z,0) =0, Wi(x,0) = 0.
The energy of W can be directly computed to be
E[W|(t) = E[W](0)
1 oo
- / (W2(2,0) + W2 (x,0))da,
=0.

— 00

This means, in particular, that
/ (Wf(x, t) + C2W£(x, t))d;v =0,
but Wf >0, Wl? > 0 so that, in order for the integral to vanish one actually needs
Wiz, t) =0, We(z,t) = 0.

Thus W (z,t) is constant for all z, . But W(x,0) = 0 so that W(z,t) = 0. Hence,
U, = Uy —that is, the solution is unique.



