
WEEK 3 NOTES

1. VARIABLE COEFFICIENTS FIRST ORDER LINEAR PDES (CONTINUED)

In the past week, we have seen the general theory for solving the equations

a(x, y)Ux + b(x, y)Uy = c(x, y)U + d(x, y),

and have seen some examples with the right hand side of the equations being zero.
Notice that when the right hand side is zero, the solution U are constant along the

characteristic curves.
Let’s begin this week by more general examples.

Example 1.1. Find the general solution to

(1 + x2)Ux + Uy = 0.

In this case the equation for the characteristic curves is given by
dy

dx
=

1

1 + x2
.

The solution to this ode is given by (why?):

y(x) = arctanx+ C, C a constant.

A plot of the characteristics for various values of C is given below.
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Again one can check that they actually cover the whole plane.
Now, from the general theory one has that

U(x, arctanx+ C)

is constant along the characteristics —of course, one can also verify it by direct computa-
tion. Hence,

U(x, arctanx+ C) = f(C) = constant for given C.

On the other hand one has that
C = y − arctanx

1
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so that
U(x, y) = U(0, y − arctanx) = f(y − arctanx),

with f a function of a single argument. This is the general solution of the equation.

Example 1.2. Find the general solution to

Ux + 2xy2Uy = 0.

In this case the equation for the characteristics is given by

dy

dx
= 2xy2.

It follows that ∫
dy

y2
=

∫
2xdx+ C.

Integrating one gets

−1

y
= x2 + C,

so that after some reorganisation one ends up with

y =
1

C − x2
.

A plot of the characteristic curves for various choices of C are given below.
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Note that the curves do not seem to fill the plane so that the solution may not exist for all
(x, y). Again, from general theory we know that U(x, y) is constant along these curves.
That is,

U(x, y(x)) = f(C).

Observing that in this case

C = x2 +
1

y

one concludes that the required general solution is given by

U(x, y) = f

(
x2 +

1

y

)
.
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Example 1.3. Solve the initial value problem{
Ut + xUx = sin t, x ≥ 0

U(x, 0) = x

This is an example of an inhomogeneous equation. The ode for the characteristics is in this
case given by

dt

dx
=

1

x
.

The general solution to this ODE is given by

t(x) = lnx+ C̃,

or

et = Cx.

It will be convenient to rewrite the latter in a slightly different form: t = lnx + lnC, so
that t = lnCx. A plot of the curves for various values of C is given below:
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From the general theory (or direct computation) one further obtains the ode
d

dx
U(x, t(x)) =

sin t

x

Expressing t in terms of x using the equation for the characteristic curves one finally finds
that

dU

dx
=

sin ln(Cx)

x
.

Using the substitution z = lnCx one has that∫
sin ln(Cx)

x
dx =

∫
sin zdz = −cosz = − cos lnCx,

so that
U = − cos lnCx+ f(C).

In particular, using the characterisitic equation et = cx to replace C by C = et

x , we get
the general solution

U(x, t) = − cos ln(et) + f(
et

x
) = − cos t+ f(

et

x
).
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To specify the function f , we use the initial condition. When t = 0, we have Cx = 1 and
x = 1

C , so

1

C
= x = U(x, 0) = − cos ln(CX) + f(C) = −1 + f(C).

This gives f(C) = 1 + 1
C . Substituting et = Cx general solution to the PDE is

U(x, t) = − cos lnCx+ f(C) = − cos t+ 1 +
x

et

Example 1.4. Find the general solution to the equation

xUx + yUy = kU, k a constant.

This equation is known as an Euler equation. The characteristic equation is then given by
dy

dx
=

y

x
,

which has general solution given by

y(x) = Cx,

with C a constant —why? A plot of the curves is shown below —observe that they intersect
at the origin.
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From the general theory (or direct computation) one has that
d

dx
U(x, y(x)) =

k

x
U.

We can then integrate it as follows:∫
dU

U
= k

∫
dx

x
+ f(C)

so that
U(x, y(x)) = f(C)xk.

Now, using the equation C = y/x to eliminate C one obtains the general solution

U(x, y) = f

(
y

x

)
xk.
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2. A SIMPLE NON-LINEAR FIRST ORDER PDES

In this section, we will try to use the method of characteristic to solve a simple non-
linear first order PDEs whose characteristics are straight lines.

Example 2.1. Solve the Initial value problem{
Ux + Ut + U2 = 0

U(x, 0) = sinx
(2.1)

This PDE is non-linear and homogenous!
To solve this problem, we first move the non-linear term to the write hand side.

Ux + Ut = −U2.

Next, using the the same theory as finding characteristics as in 2.1 in Week 2 notes, we
get the characteristic equations

∂t

∂x
=

1

1
= 1.

And thus the characteristics are straight lines

x = t+ C

So the equation (2.1) becomes

d

dx
U(x, t(x)) = −U2

−1

U2(x, t(x))

d

dx
U(x, t(x)) = 1.

Integrating both sides, we get

1

U(x, t(x))
= x+ f(C).

Here f can be any differentiable functions.
Now using the initial value U(x, 0) = sinx to specify. When t = 0, we have x = C.

And thus when t = 0, we have

1

C + f(C)
=

1

x+ f(C)
= U(x, 0) = sinx = sinC.

So

f(C) =
1

sinC
− C.

Using C = x− t, we then have

x+ f(C) = x+
1

sinC
− C = x+

1

sin(x− t)
− (x− t) = t+

1

sin(x− t)
.

So the general solution to the PDE is

U(x, t) =
1

t+ 1
sin(x−t)

=
sin(x− t)

t sin(x− t) + 1
.

The solution exists when t sin(x− t) + 1 ̸= 0.
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3. SECOND ODER PARTIAL DIFFERENTIAL EQUATIONS

In this section we briefly look at the classification of second order partial differential
equations with constant coefficients.

3.1. Introduction. The most general second order partial differential equation with con-
stant coefficients is given by

(3.1) aUxx + 2bUxy + cUyy + dUx + eUy + fU = h(x, y)

with
a, b, c, d, e, f,

are constants and h(x, y) is an arbitrary function. The terms with the highest order deriva-
tives, namely

(3.2) aUxx + 2bUxy + cUyy

are called the principal part. It determines the character of the solutions of the equation.
In the following, to avoid messy computations, we consider only the principal part —i.e.
we set d, e and f to zero. Particular cases of equation (3.1) are

Uxx − Utt = 0 (wave equation),
Uxx + Uyy = 0 (Laplace equation),
Uxx − Ut = 0 (heat equation).

The solutions to each of these equations have a completely different behaviour. In the
following, we will see that, in a sense, these are the only possibilities.

3.2. Quadratic forms. The basic observation is the following: compare the principal part
(3.2) with the quadratic form

ax2 + 2bxy + cy2.

We know from basic geometry that the solutions to the equation defined by this quadratic
form represents a conic section —i.e. a hyperbola, a parabola or an ellipse. The type of
conic section depends on the coefficients in the quadratic form. More precisely, completing
squares one has that

ax2 + 2bxy + cy2 = a

((
x+

b

a
y

)2

+

(
ac− b2

a2

)
y2

)
.

One then has the following classification:

b2 − ac > 0 hyperbola,
b2 − ac = 0 parabola,
b2 − ac < 0 ellipse.

One can do something similar with the principal part (3.2). One can readily check that

aUxx + 2bUxy + cUyy = a

((
∂

∂x
+

b

a

∂

∂y

)2

+

(
ac− b2

a2

)
∂

∂y2

)
U.

Accordingly, one classifies the pde’s according to the same criteria as for the quadratic
forms —more precisely, one says that (3.1) is

b2 − ac > 0 hyperbolic pde,
b2 − ac = 0 parabolic pde,
b2 − ac < 0 elliptic pde.
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One can readily check that

wave equation hyperbolic,
Laplace equation elliptic,

heat equation parabolic.

3.3. A change of variables. Consider now new coordinates (x′, y′) given by

x′ = x,

y′ = − b

a
x+ y,

so that

x = x′,

y = y′ +
b

a
x.

Using the chain rule for partial derivatives one finds that
∂

∂y′
=

∂

∂y
,

∂

∂x′ =
∂

∂x
+

b

a

∂

∂y
.

Substituting the above into the principal part (3.2) a calculation readily gives

aUxx + 2bUxy + cUyy = a

(
Ux′x′ +

(
ac− b2

a2

)
Uy′y′

)
.

Now, if ac− b2 < 0 one can write

Ux′x′ +

(
ac− b2

a2

)
Uy′y′ = Ux′x′ − |ac− b2|

|a|2
Uy′y′

=

(
∂

∂x′ +

√
|ac− b2|
|a|

∂

∂y′

)(
∂

∂x′ −
√
|ac− b2|
|a|

∂

∂y′

)
U.

In fact, one can eliminate the factor
√

|ac− b2|/|a| by a further change of variables.

Note. The classification also works if the coefficients depend on the coordinates. In that
case the character of the equation can change from point to point. As an example one has
the equation

Uxx + xUyy = 0.

We will now focus on hyperbolic equations in the coming weeks. A typical example is
the wave equations

4. THE WAVE EQUATION IN 1 + 1 DIMENSION

The wave equation in 1 + 1 dimension is

(4.1) Utt − c2Uxx = 0

with c a constant (wave speed) and x ∈ I ⊆ R, t > 0 —i.e. I is an interval which can be
finite, semi-infinite or infinite. The equation is supplemented by initial conditions

U(x, 0) = f(x), Ut(x, 0) = g(x),

and, possibly, also boundary conditions if I ̸= R.
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Note. In 3 + 1 dimensions the wave equation takes the form

Utt − c2(Uxx + Uyy + Uzz) = 0.

The wave equation arises in problems describing the vibration of strings and mem-
branes. More generally, the equations describe sound waves, electromagnetic waves, seis-
mic waves, gravitational waves, propagation of epidemics, movement of populations, ...

4.1. The vibrating string. Consider, in the following, a flexible, elastic, homogeneous
string of length L undergoing small transverse vibrations. Assume that the motion is re-
stricted to a plane, and let U(x, t) be the displacement from equilibrium position at time t
and position x.

x1 x2

T

T

If the string is perfectly flexible, then the force (tension) responsible for the displace-
ment is directed tangentially along the string and is constant in time since the string is
homogeneous. The position of the string at a point x is then given by

(
x, U(x, t)

)
and the

slope of the string at x is that of the tangent. The tangent vector at a point x is given by

d

dx

(
x, U(x, t)

)
=
(
1, Ux(x, t)

)
.

The key to obtaining an equation for U(x, t) is Newton’s second law

F⃗ = ma⃗.

Now, from the diagram one has that

cos θ =
1√

1 + U2
x

, sin θ =
Ux√
1 + U2

x

.

1

Ux

(1+Ux
2)1/2

θ

The tension F⃗ is then given by

F⃗ = F (x)
(
cos θ, sin θ

)
=

F√
1 + U2

x

(
1, Ux

)
,
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where F = F (x) is the norm of F⃗ and is assumed to be independent of time —see above.
From the discussion above we have that the position of an element of string is then given
by

x⃗ =
(
x, U(x, t)

)
so that its velocity and acceleration are given, respectively, by

˙⃗x =
(
0, Ut

)
, ¨⃗x =

(
0, Utt),

where the overdot ˙ denotes differentiation with respect to t. We can now compute the
force along a segment of string [x1, x2] using Newton’s law:

F (x)√
1 + U2

x

(
1, Ux)

∣∣∣∣x2

x1

=

∫ x2

x1

ρ ·
(
0, Utt(s, t)

)
ds,

where ρ is the density of the string (mass/unit length) which we assume to be constant.
As this is a vector expression it implies two equations for the x and y components. The x
component gives the equation

(4.2)
F (x)√
1 + U2

x

∣∣∣∣x2

x1

= 0,

while the y component gives

(4.3)
F (x)√
1 + U2

x

Ux

∣∣∣∣x2

x1

=

∫ x2

x1

ρUtt(s, t)ds.

Now, as Ux is assumed to be small, then using Taylor series one has that√
1 + U2

x ≈ 1 +
1

2
U2
x + · · · ≈ 1.

Using this approximation it follows from (4.2) that F (x) is constant —i.e. independent of
x. Equation (4.3) then gives

F

(
Ux(x2, t)− Ux(x1, t)

)
=

∫ x2

x1

ρUtt(s, t)ds.

Now, the fundamental theorem of calculus then gives that

F
(
Ux(x2, t)− Ux(x1, t)

)
= F

∫ x2

x1

Uxx(s, t)ds.

Hence,

F

∫ x2

x1

Uxx(x, t)ds =

∫ x2

x1

ρUtt(s, t)ds.

As the points x1 and x2 are arbitrary the integrands must be equal so that

F

ρ
Uxx = Utt.

We write the latter as

(4.4) Utt = c2Uxx, c ≡

√
F

ρ
.

This is the (homogeneous) wave equation. The constant c is called the wave speed.
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4.2. Computing the general solution. Consider the change of variables

(4.5) u = x− ct, v = x+ ct.

Using the chain rule one has that
∂

∂x
=

∂u

∂x

∂

∂u
+

∂v

∂x

∂

∂v
=

∂

∂u
+

∂

∂v
,

∂

∂t
=

∂u

∂t

∂

∂u
+

∂v

∂t

∂

∂v
= c

(
∂

∂v
− ∂

∂u

)
.

The second derivatives are computed as

∂2

∂x2
=

(
∂

∂x

)2

=

(
∂

∂u
+

∂

∂v

)(
∂

∂u
+

∂

∂v

)
=

∂2

∂u2
+ 2

∂2

∂u∂v
+

∂2

∂v2
,

∂2

∂t2
=

(
∂

∂t

)2

= c2
(

∂

∂v
− ∂

∂u

)(
∂

∂v
− ∂

∂u

)
= c2

(
∂2

∂v2
− 2

∂2

∂u∂v
+

∂2

∂u2

)
.

Thus, one has that

Utt − c2Uxx = c2
(

∂2

∂v2
− 2

∂2

∂u∂v
+

∂2

∂u2

)
U − c2

(
∂2

∂u2
+ 2

∂2

∂u∂v
+

∂2

∂v2

)
U

= −4c2
∂2U

∂u∂v
.

Hence, we have transformed the original wave equation (4.4) into

(4.6)
∂2U

∂u∂v
= 0.

To solve equation (4.6) we notice that

∂2U

∂u∂v
=

∂

∂u

(
∂U

∂v

)
,

so that integrating with respect to u one has∫
∂

∂u

(
∂U

∂v

)
du =

∂U

∂v
= f(v),

with f(v) an arbitrary function of v. Integrating now with respect to v one gets

U(u, v) =

∫
f(v)dv +G(u),

with G(u) an arbitrary function of u. Now, observe that the integral
∫
f(v)dv is an arbi-

trary function of v so that one can write

U(u, v) = F (v) +G(u)

where F (v) is another arbitrary function of v. Writing the latter in terms of the coordinates
(x, y) one finds that

(4.7) U(x, t) = G(x− ct) + F (x+ ct).

This is the general solution to the wave equation (4.4).


