PROBLEM SET 7 FOR MTH 6151

1. Solve

$$
U_{x x}+U_{y y}=0,
$$

in the rectangle

$$
\Omega=\{0<x<a, 0<y<b\}
$$

with boundary conditions

$$
U(0, y)=g_{1}(y), \quad U(a, y)=0, \quad U(x, 0)=0, \quad U(x, b)=0
$$

2. Solve

$$
U_{x x}+U_{y y}=0,
$$

in the rectangle

$$
\Omega=\{0<x<a, 0<y<b\}
$$

with boundary conditions

$$
U(0, y)=0, \quad U(a, y)=0, \quad U(x, 0)=0, \quad U(x, b)=f_{2}(x)
$$

3. Find the harmonic function $U(x, y)$ in the square

$$
\Omega=\{0<x<1,0<y<1\}
$$

with the boundary conditions

$$
U(x, 0)=x, \quad U(x, 1)=0, \quad U(0, y)=0, \quad U_{x}(1, y)=y^{2}
$$

4. Solve the Laplace equation on a disk of radius r_{*} with boundary condition given by

$$
U\left(r_{*}, \theta\right)=\sin ^{2} \theta .
$$

HINT: remember that $\sin ^{2} \theta=\frac{1}{2}-\frac{1}{2} \cos 2 \theta$.
5. Use Poisson's formula to compute in closed form the solution to the Laplace equation on the disk of radius r_{*} with boundary condition

$$
U\left(r_{*}, \theta\right)=\left\{\begin{array}{cc}
U_{1} & 0<\theta<\pi \\
U_{2} & \pi<\theta<2 \pi
\end{array}\right.
$$

with U_{1} and U_{2} two constants. In class we obtained the solution in the form of an infinite series. HINT: divide the Poisson integral in two. Also, observe that for $a>b \geq 0$ one has

$$
\int \frac{d x}{a^{2}+b^{2}-2 a b \cos x}=\frac{2}{a^{2}-b^{2}} \arctan \left(\frac{a+b}{a-b} \tan \frac{x}{2}\right) .
$$

CHALLENGE: how one would compute the above integral from scratch?
6. Solve the Laplace equation on the annular region

$$
\Omega=\left\{r_{1}<r<r_{2}\right\}
$$

with boundary conditions given by

$$
\begin{aligned}
& U\left(r_{1}, \theta\right)=C_{1}, \\
& U\left(r_{2}, \theta\right)=C_{2} .
\end{aligned}
$$

What happens when $C_{1}=C_{2}$? Can you give an interpretation of the solution in terms of the temperature of a metallic annular object?
7. Let (r, θ) denote the usual polar coordinates. Show that if $U(r, \theta)$ is a harmonic function (i.e. a solution to the Laplace equation) then also $U(1 / r, \theta)$ is a harmonic function.
8. Solve the Laplace equation on the annular region

$$
\Omega=\{1<r<e\}
$$

with boundary conditions given by

$$
\begin{aligned}
& U(1, \theta)=1+e \sin \theta \\
& U(e, \theta)=3+\sin \theta
\end{aligned}
$$

Here e is the base of the natural logarithms.

