PROBLEM SET 5 FOR MTH 6151

1. Consider

$$U_{tt} - c^2 U_{xx} = 0$$

for $x \in [0, L]$ with boundary conditions

$$U_x(0,t) = 0,$$
 $U(L,t) = 0.$

Verify the eigenfunctions are

$$X_n(x) = \cos\left(\left(\frac{1}{2} + n\right)\frac{\pi x}{L}\right),$$

and write down the series expansion for a solution U(x,t).

2. Solve

$$U_{tt} - c^2 U_{xx} = 0$$

for $x \in [0, \pi]$ with the boundary conditions

$$U_x(0,t) = U_x(\pi,t) = 0$$

and the initial conditions

$$U(x,0) = 0,$$
 $U_t(x,0) = \cos^2 x.$

Hint:

- $\cos^2 x = \frac{\cos(2x)+1}{2}$.
- Also notice the boundary conditions for this question, compared to the one U(0,t) = U(L,t) = 0 in the lecture notes, and the one $U_x(0,t) = U(L,t) = 0$ from Question 1.
- **3.** Find the Fourier series of f(x) = |x| on [-L, L]. Draw a sketch of f(x).
- **4.** Find the Fourier series of $f(x) = |\sin x|$ on the interval $[-\pi, \pi]$. Draw a sketch of f(x).
- **5.** Proceeding as in the lectures and using the conservation of energy to show that the solution to the problem

$$U_{tt} - c^2 U_{xx} = 0,$$
 $x \ge 0,$ $t \ge 0,$ $U(0,t) = 0,$ $U(x,0) = f(x),$ $U_t(x,0) = g(x),$

is unique.

6. Consider for $x \in [0, L]$ the wave equation

$$U_{tt} - c^2 U_{xx} = 0,$$

with boundary conditions

$$U(0,t) = 0,$$
 $U_x(L,t) = 0,$

and the initial conditions

$$U(x,0) = x,$$
 $U_t(x,0) = 0.$

Find, using the method of separation of variables, the solution explicitly in series form. HINT: look at Question 1 in this problem set.