MTH786, Semester A, 2023/24

Coursework 3

N. Perra

Problem 1. Below you are asked to prove several small facts about convexity leading to a prove of the MSE function being convex.

1. Show that the sum of two convex functions is convex. Hint: use the definition of convexity.
2. Prove that, for any convex function $g: \mathcal{C} \subset \mathbb{R} \rightarrow \mathbb{R}$, the function $f(x):=a g(x)+b$ is also convex. Here $b \in \mathbb{R}$ is a scalar, and $a \in \mathbb{R}_{+}$is a positive scalar (i.e. $a>0$).
3. Verify that the function $h(w):=x w-y$ for fixed $x \in \mathbb{R}$ and $y \in \mathbb{R}$ satisfies

$$
h(\lambda w+(1-\lambda) v)=\lambda h(w)+(1-\lambda) h(v),
$$

for all $w, v \in \mathbb{R}$ and $\lambda \in[0,1]$.
4. Show that the function $f(w):=g(h(w))$, where $g: \mathbb{R} \rightarrow \mathbb{R}$ is some convex function and h the function from Question 3, is convex.
5. Verify that the function $g: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ with $g(x):=\frac{1}{2} x^{2}$ is convex.
6. Show that the simplified MSE function MSE : $\mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ with

$$
\operatorname{MSE}(w)=\frac{1}{2}(x w-y)^{2}
$$

is convex.
Hint: make us of Questions 115.
7. Prove that the general MSE function MSE : $\mathbb{R}^{d+1} \rightarrow \mathbb{R}_{\geq 0}$ with

$$
\operatorname{MSE}(\mathbf{w}):=\frac{1}{2 s}\|\mathbf{X w}-\mathbf{y}\|^{2},
$$

for a matrix $\mathbf{X} \in \mathbb{R}^{s \times(d+1)}$ and a vector $\mathbf{y} \in \mathbb{R}^{s}$, is convex.
Problem 2. Set up a linear regression problem of the form

$$
\begin{equation*}
\hat{\mathbf{w}}=\arg \min _{\mathbf{w} \in \mathbb{R}^{2}}\left\{\frac{1}{2 s} \sum_{i=1}^{3}\left|w^{(0)}+w^{(1)} x^{(i)}-y^{(i)}\right|^{2}\right\}, \tag{1}
\end{equation*}
$$

for data points $\left(x^{(1)}, y^{(1)}\right)$ with $x^{(1)}=-c$ and $y^{(1)}=2,\left(x^{(2)}, y^{(2)}\right)$ with $x^{(2)}=0$ and $y^{(2)}=2$, and $\left(x^{(3)}, y^{(3)}\right)$ with $x^{(3)}=c$ and $y^{(3)}=2$, for some constant $c>0$.

1. Derive the normal equation for this problem.
2. Solve the normal equations for your weights $\hat{\mathbf{w}}=\left(\hat{w}^{(0)}, \hat{w}^{(1)}\right)^{\top}$.
3. Repeat the previous exercise, but this time assume you make an error in your measurement. The new, perturbed measurements \mathbf{y}_{δ} read $y_{\delta}^{(1)}=2+\varepsilon, y_{\delta}^{(2)}=2+\varepsilon$ and $y_{\delta}^{(3)}=2-\varepsilon$.
4. Compute the error between $\hat{\mathbf{w}}$ and $\hat{\mathbf{w}}_{\delta}$ in the Euclidean norm.
5. How does the error compare with the data error $\delta:=\left\|\mathbf{y}-\mathbf{y}_{\delta}\right\|$?

Problem 3. Let us consider a standard normal equation for a linear regression in dimensions $d \times 1$ (i.e. output is $n=1$ dimensional). Let \mathbf{y} and \mathbf{y}_{δ} be non-perturbed and perturbed output data correspondingly.

$$
\left\|\hat{\mathbf{w}}-\hat{\mathbf{w}}_{\delta}\right\|^{2}=\sum_{j=1}^{d+1} \sigma_{j}^{-2}\left|\left\langle\mathbf{u}^{(j)}, \mathbf{y}-\mathbf{y}_{\delta}\right\rangle\right|^{2}
$$

for two least-squares solutions $\hat{\mathbf{w}}$ and $\hat{\mathbf{w}}_{\delta}$ with singular value decompositions

$$
\hat{\mathbf{w}}=\sum_{j=1}^{d+1} \sigma_{j}^{-1} \mathbf{v}^{(j)}\left\langle\mathbf{u}^{(j)}, \mathbf{y}\right\rangle \quad \text { and } \quad \hat{\mathbf{w}}_{\delta}=\sum_{j=1}^{d+1} \sigma_{j}^{-1} \mathbf{v}^{(j)}\left\langle\mathbf{u}^{(j)}, \mathbf{y}_{\delta}\right\rangle,
$$

where $\sigma_{j}, \mathbf{u}^{(j)}, \mathbf{v}^{(j)}$ are singular values and right-/left- singular vectors of matrix \mathbf{X}. Hint: make use of the fact that singular vectors are orthonormal.

Problem 4. Set up a linear regression problem of the form

$$
\begin{equation*}
\hat{\mathbf{w}}=\arg \min _{\mathbf{w} \in \mathbb{R}^{2}}\left\{\frac{1}{2 s} \sum_{i=1}^{2}\left|w^{(0)}+w^{(1)} x^{(i)}-y^{(i)}\right|^{2}\right\}, \tag{2}
\end{equation*}
$$

for data points $\left(x^{(1)}, y^{(1)}\right)$ with $x^{(1)}=1-c$ and $y^{(1)}=1,\left(x^{(2)}, y^{(2)}\right)$ with $x^{(2)}=1+c$ and $y^{(2)}=1$ for some constant $c>0$.

1. Derive the normal equation for this problem.
2. For the matrix \mathbf{X} you have set up find its singular values and left-/right- singular vectors.
3. Solve the normal equations for your weights $\hat{\mathbf{w}}=\left(\hat{w}^{(0)}, \hat{w}^{(1)}\right)^{\top}$.
4. Repeat the previous exercise, but this time assume you make an error in your measurement. Consider two cases of the new, perturbed measurements

- \mathbf{y}_{δ} reads $y_{\delta}^{1}=1-\varepsilon, y_{\delta}^{(2)}=1+\varepsilon$.
- \mathbf{y}_{δ} reads $y_{\delta}^{1}=1+\varepsilon, y_{\delta}^{(2)}=1+\varepsilon$.

5. In both cases compute the error between $\hat{\mathbf{w}}$ and $\hat{\mathbf{w}}_{\delta}$ in the Euclidean norm and compare with the data error $\delta:=\left\|\mathbf{y}-\mathbf{y}_{\delta}\right\|$?
6. Explain why do you observe such a huge difference between the two cases when $c \rightarrow 0$?

Hint: make a use of the SVD and use singular vectors you have obtained earlier.

