

MTH786, Semester A, 2023/24 Coursework 3

N. Perra

Problem 1. Below you are asked to prove several small facts about convexity leading to a prove of the MSE function being convex.

- 1. Show that the sum of two convex functions is convex. **Hint**: use the definition of convexity.
- 2. Prove that, for any convex function $g : \mathcal{C} \subset \mathbb{R} \to \mathbb{R}$, the function f(x) := ag(x) + b is also convex. Here $b \in \mathbb{R}$ is a scalar, and $a \in \mathbb{R}_+$ is a positive scalar (i.e. a > 0).
- 3. Verify that the function h(w) := xw y for fixed $x \in \mathbb{R}$ and $y \in \mathbb{R}$ satisfies

$$h(\lambda w + (1 - \lambda)v) = \lambda h(w) + (1 - \lambda)h(v),$$

for all $w, v \in \mathbb{R}$ and $\lambda \in [0, 1]$.

- 4. Show that the function f(w) := g(h(w)), where $g : \mathbb{R} \to \mathbb{R}$ is some convex function and h the function from Question 3, is convex.
- 5. Verify that the function $g : \mathbb{R} \to \mathbb{R}_{\geq 0}$ with $g(x) := \frac{1}{2}x^2$ is convex.
- 6. Show that the simplified MSE function $MSE : \mathbb{R} \to \mathbb{R}_{\geq 0}$ with

$$MSE(w) = \frac{1}{2}(xw - y)^2$$

is convex.

Hint: make us of Questions 1–5.

7. Prove that the general MSE function $MSE : \mathbb{R}^{d+1} \to \mathbb{R}_{\geq 0}$ with

$$MSE(\mathbf{w}) := \frac{1}{2s} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2,$$

for a matrix $\mathbf{X} \in \mathbb{R}^{s \times (d+1)}$ and a vector $\mathbf{y} \in \mathbb{R}^s$, is convex.

Problem 2. Set up a linear regression problem of the form

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}\in\mathbb{R}^2} \left\{ \frac{1}{2s} \sum_{i=1}^3 |w^{(0)} + w^{(1)} x^{(i)} - y^{(i)}|^2 \right\},\tag{1}$$

for data points $(x^{(1)}, y^{(1)})$ with $x^{(1)} = -c$ and $y^{(1)} = 2$, $(x^{(2)}, y^{(2)})$ with $x^{(2)} = 0$ and $y^{(2)} = 2$, and $(x^{(3)}, y^{(3)})$ with $x^{(3)} = c$ and $y^{(3)} = 2$, for some constant c > 0.

1. Derive the normal equation for this problem.

- 2. Solve the normal equations for your weights $\hat{\mathbf{w}} = (\hat{w}^{(0)}, \hat{w}^{(1)})^{\top}$.
- 3. Repeat the previous exercise, but this time assume you make an error in your measurement. The new, perturbed measurements \mathbf{y}_{δ} read $y_{\delta}^{(1)} = 2 + \varepsilon$, $y_{\delta}^{(2)} = 2 + \varepsilon$ and $y_{\delta}^{(3)} = 2 \varepsilon$.
- 4. Compute the error between $\hat{\mathbf{w}}$ and $\hat{\mathbf{w}}_{\delta}$ in the Euclidean norm.
- 5. How does the error compare with the data error $\delta := \|\mathbf{y} \mathbf{y}_{\delta}\|$?

Problem 3. Let us consider a standard normal equation for a linear regression in dimensions $d \times 1$ (i.e. output is n = 1 dimensional). Let **y** and **y**_{δ} be non-perturbed and perturbed output data correspondingly.

$$\|\hat{\mathbf{w}} - \hat{\mathbf{w}}_{\delta}\|^2 = \sum_{j=1}^{d+1} \sigma_j^{-2} \left| \langle \mathbf{u}^{(j)}, \mathbf{y} - \mathbf{y}_{\delta} \rangle \right|^2$$

for two least-squares solutions $\hat{\mathbf{w}}$ and $\hat{\mathbf{w}}_{\delta}$ with singular value decompositions

$$\hat{\mathbf{w}} = \sum_{j=1}^{d+1} \sigma_j^{-1} \mathbf{v}^{(j)} \langle \mathbf{u}^{(j)}, \mathbf{y} \rangle \quad \text{and} \quad \hat{\mathbf{w}}_{\delta} = \sum_{j=1}^{d+1} \sigma_j^{-1} \mathbf{v}^{(j)} \langle \mathbf{u}^{(j)}, \mathbf{y}_{\delta} \rangle \,,$$

where σ_j , $\mathbf{u}^{(j)}$, $\mathbf{v}^{(j)}$ are singular values and right-/left- singular vectors of matrix **X**. Hint: make use of the fact that singular vectors are orthonormal.

Problem 4. Set up a linear regression problem of the form

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}\in\mathbb{R}^2} \left\{ \frac{1}{2s} \sum_{i=1}^2 |w^{(0)} + w^{(1)}x^{(i)} - y^{(i)}|^2 \right\} \,, \tag{2}$$

for data points $(x^{(1)}, y^{(1)})$ with $x^{(1)} = 1 - c$ and $y^{(1)} = 1$, $(x^{(2)}, y^{(2)})$ with $x^{(2)} = 1 + c$ and $y^{(2)} = 1$ for some constant c > 0.

- 1. Derive the normal equation for this problem.
- 2. For the matrix \mathbf{X} you have set up find its singular values and left-/right- singular vectors.
- 3. Solve the normal equations for your weights $\hat{\mathbf{w}} = (\hat{w}^{(0)}, \hat{w}^{(1)})^{\top}$.
- 4. Repeat the previous exercise, but this time assume you make an error in your measurement. Consider two cases of the new, perturbed measurements
 - \mathbf{y}_{δ} reads $y_{\delta}^1 = 1 \varepsilon, \ y_{\delta}^{(2)} = 1 + \varepsilon.$
 - \mathbf{y}_{δ} reads $y_{\delta}^1 = 1 + \varepsilon$, $y_{\delta}^{(2)} = 1 + \varepsilon$.
- 5. In both cases compute the error between $\hat{\mathbf{w}}$ and $\hat{\mathbf{w}}_{\delta}$ in the Euclidean norm and compare with the data error $\delta := \|\mathbf{y} \mathbf{y}_{\delta}\|$?
- 6. Explain why do you observe such a huge difference between the two cases when $c \to 0$?

Hint: make a use of the SVD and use singular vectors you have obtained earlier.