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RV ocenda

Today's lecture

o Review

o Use Bayes' theorem to compute posterior pmf with discrete pmf
priors.

o Use Bayes' theorem to compute posterior pfd with continuous pdf
priors
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Bayesian inference

o Probability model p(y | #) depends on a set of parameters 6.
o 0 is unknown and we would like to learn about 6.

o Let y be the observed data, assumed to be generated by this
probability model, p(y | 9)

o In Bayesian statistics, we assign probabilities on both the parameters
0 and data y
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layesian inference

o So we start with a probability distribution for the parameters p(6),
called the prior distribution.

o 0 is either discrete or continuous random variable. Hence, p(6) is
either a pmf or pdf

@ The prior is a subjective distribution, based on experimenter’s belief,
and is formulated before the data y are seen.
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Bayesian inference

o Let y be the observed data.

o We then update the prior distribution (pmf or pdf) to a posterior
distribution (pmf or pdf) for 8, p(6 | y), using Bayes’ theorem

pO) Py | 9)
p(y)
where the observed data enters through the likelihood p(y | 6).

p(0]y) =

o p(y) is the normalising constant, which is given by

p) = [ POy |8 0" or 3 p(0")ply | )

‘4

@ p(y) does not depend on 6
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What does it mean?

p(0 | y) o< p(8) p(y | 0) (1)

Posterior o< prior X likelihood

o p(y | 0) is the likelihood and it the probability of data y given the
true 6.

o Start with initial beliefs/information about 8, p(6) - this is the prior
distribution formulated before the data are seen.

o Bayesian updating: Update the prior distribution using the data y,
using (1).
© The updated prior, p(6 | y) is called the posterior distribution .

@ We base our inferences about 6 based on this posterior distribution.
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Bayesian updating with discrete data, discrete prior

o parameter 6 discrete with values 6, and 6, and prior pmf p(6)
o Discrete data x

o Discrete likelihood, p(x|6)

o Posterior pmf: p(6,|x), p(6,|x)

Hypothesis | prior | likelihood Bayes numerator | posterior
4 p(®) | p(x|0) p(x|0)p(0) p(0]x)
0, p(6,) | p(x|6,) p(x[6:) p(6:) p(6:]x)
0, p(0:) | p(x]6.) p(x[6:) p(6.) p(6:|x)
Total 1 NOT SUM TO 1 | p(x) 1

©

Law of total probability: p(x) = p(x|6,)p(6:) + p(x|6,)p(6,).

M, p(92|X) = M

Bayes’ theorem: p(6,|x) = 200 o0

©

likelihood x prior
total prob. of data’

posterior =
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Board Question: Coins

o There are three types of coins which have different probabilities of
heads

o Type A coins are fair, with probability 0.5 of heads.
o Type B are bent and have probability 0.6 of heads.
o Type C are bent and have probability 0.9 of heads.

Suppose | have a drawer containing 5 coins: 2 of type A, 2 of type
B, and 1 of type C. | pick a coin at random, and without showing
you the coin | flip it once and get heads.

o Make a Bayesian update table and compute the posterior pmf that
the chosen coin is each of the three coins.
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@ In the previous lecture, we have done Bayesian updating when we
had a finite number of hypotheses or a discrete parameter 6 e.g.,
- in the diagnostic example had 2 hypotheses (HIV +ve, HIV -ve),
- in the coin example we had 3 hypothesis (A, B and C).

o In this topic we will study Bayesian updating where there is a
continuous range of hypotheses, i.e., 8 is a continuous random
variable.

@ The Bayesian updating will be essentially the same, based on the

Bayes' theorem

posterior o< prior X likelihood
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Examples with continuous parameters

@ Suppose we have a medical treatment for a disease than can succeed
or fail with probability g. Then g is a continuous quantity between 0
and 1.

o The lifetime of a certain light bulb T is modeled as an exponential
distribution exp(A) with unknown A. We can assume that \ takes
any value greater than 0.
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Baysian updating: Discrete likelihoods, continuous priors

6 : continuous parameter with prior pdf p(#) and range [a, b].
x : random discrete data
discrete likelihood: p(x|0)

© © o ¢

posterior pdf: p(6]x)

©

By Bayes’ theorem we update the prior pdf to a posterior pdf

p(x|0)p(0) _  p(xI0)p(6)
p(x) I p(x10)p(0)d0

p(bx) =

©

Law of total probability: p(x) = [” p(x|0)p(6) db.
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-ian updating: Discrete likelihoods, continuous priors

o p(x) does not depend on € and serves as the normalising constant
so that p(f|x) is a proper pdf and integrates to 1.

@ Hence, we can express Bayes' theorem in the form

p(0]x) o< p(x|0)p(0).

posterior o< prior X likelihood
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-an inference

p(0 | x) oc p(6) p(x | )

@ p(0) - initial beliefs/information about 6, the prior pdf.

o p(x | 0) - the likelihood for observed data x with parameters 6.
@ Update information about 6 using the likelihood.

@ The resulting pdf p(é | x) is called the posterior pdf of 6

posterior o< prior X likelihood
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Bayesian updating: Discrete likelihoods, continuous priors

@ Sometimes, it is better to use p(#)df to work with probabilities
instead of densities
e.g the prior probability that 8 is in a small interval of width d@

around 0.5 if p(0.5)dé.

@ In this case, the Bayes' theorem is

p(x|0)p(0)d0 _  p(x|6)p(0)do
p(x) J. p(x|0)p(0) d6

p(0]x)d0 =
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Bayesian updating: Discrete likelihoods, continuous priors

@ 0 : continuous parameter with prior pdf p(f) and range [a, b].
o x : random discrete data
o likelihood: p(x|0)

Bayesian updating table

Hypothesis | prior prob likelihood | Bayes numerator posterior prob. p(8|x)df
] p(0)d0 p(xI0) | pxI0)p(0)d0 S0
Total [T p(0)do =1 p(x) = [ p(x|0)p(0)do | 1

© The posterior density p(6|x) is obtained by removing df from the
posterior probability in the table.
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Bayesian updating: Discrete likelihoods, continuous priors

Example: Binomial data, Beta prior

©

A biased coin has probability of heads g which is unknown.

©

We toss the coin n times and observe k heads (This is my data
x = k).
The binomial likelihood for this problem:

©

plicla) = (7)o

©

For Bayesian inference, we need to specify a prior distribution for g.

©

g is a continuous quantity between 0 and 1.

© What is a possible probability distribution for g (or family of
distributions)?
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Bayesian updating: Discrete likelihoods, continuous priors

Example: Binomial data, Beta prior

@ The family of Beta distributions seems a natural choice for a prior
distribution for g, since it describes continuous random variables
with support on [0, 1].

o If g ~ Beta(a, ), its probability density function is

¢ (1-q)
B(e, B)

where B is the Beta function and « and (3 are parameters,

f(q) = ,0<qg<1,
1
B(a, 8) :/0 x*7H1 —X)ﬁ_l dx

(a)l'(B)
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IR b tions

a,b

05,2 1,1 ——
55— 10,40

o Probability density
functions.

o If g ~ Beta(a, f)

a

E(q)=a+5

Probability density
&
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Bayesian updating: Discrete likelihoods, continuous priors

Example: Binomial data, Beta prior

o Bayesian updating:

posterior o< prior x likelihood

@ The posterior distribution p(g|x) is proportional to
p(q | k) o T (1 — q)" <

o We recognise this to have the form of a beta distribution, so the
posterior is a beta distribution, beta(k + o, n — k + ().

@ Hence, the normalising constant must be 1/B(k + a,n — k + ).
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Bayesian updating: Discrete likelihoods, continuous priors

@ The actual, normalized pdf is

qk+o¢71(1 o q)nkar,Bfl

Pla k)= B(k+a,n—k+p)

the pdf of a Beta(k + o, n — k + 3) r.v. (Remember: the random
variable is g and k is fixed).

o Bayesian updating: We update the prior Beta(a, 3) to posterior
Beta(k + a,n — k + f3).
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Bayesian updating table: Discrete likelihoods, continuous
priors

Example: Binomial data, Beta prior

Y ~ Binom(n,q), with g unknown
Continuous hypotheses g in [0, 1].
Data y

Prior p(q)
Likelihood p(y|q)

¢ © © o o

Hypothesis | prior prob. likelihood Bayes numerator posterior prob.
q Beta(a, 3)dq | binomial(n, q) | c¢g**7*(1 — q)"***~'dg Beta(k + o, n — k + 3)dg
Total 1 T=[Tcg(1—gq)*"'dg |1

@ The posterior density is Beta(k + a, n — k + 3)

o Note: We don't need to compute T. Once we know the posterior is
of the form cg*+*~*(1 — g)"~***~' we have to find ¢ that makes it a
proper density. In this case ¢ = 1/Beta(k + a,n — k + f3)
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Unknown parameters and prior parameters

Remarks:

o We need to distinguish between the parameters we are estimating,
which we generally have denoted by 6 and the parameters for the
prior distribution(s).

@ In this binomial example, g is uncertain: we have prior and posterior
distributions for g.

o The parameters of the prior distribution, here o and 3, are taken as
fixed.
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-tion: bent coin

©

Bent coin with unknown probability 6 of heads
Prior: p(8) = 26 on [0,1]
Data: toss and get heads

©

©

©

Compute the Bayesian update table.
Find the posterior pdf to this data.

©
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Posterior mean

In Bayesian how would you choose a particular value of g?
@ A natural estimate for g is the mean of the posterior distribution
p(q|k), called the posterior mean.

o For the binomial case with Beta(a, 3) prior, the posterior mean is

k+«

Gs = E k)= ———.

@ The prior distribution has mean a/(a + ) which would be our best
estimate of g without having observed the data.

o Ignoring the prior, we would estimate g using the maximum
likelihood estimate (MLE)

==
n

@ The Bayes’ estimate gz combines all of this information.
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1 Posterior mean

@ Note that we can rewrite §, as

et (o) Frrars (70)
qB_n+a+6 n n+a+p\at+p/)’

o Thus §g is a linear combination of the prior mean and the MLE, with
the weights being determined by n, « and
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Flat priors

©

One important prior is called flat prior or uniform prior.

©

A flat prior assumes that every hypothesis is equally probable.

©

For example if g has range [0, 1], then p(g) = 1 is a flat prior.
E.g. a uniform distribution on [0, 1] is Beta(1,1)

©

@ So, posterior distribution is Beta(k +1,n — k + 1)
k+1
Posteri E(ql k)= ——
o Posterior mean: E(q | k) P
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Board question

©

Bent coin with unknown probability 6 of heads
Flat prior: p(#) =1 on [0, 1]
Data: toss 27 times and get 15 heads and 12 tails.

©

©

©

Compute the Bayesian update table.

©

Give the integral for the normalising factor but do not compute it.
Call its value T and give the posterior pdf in terms of T.
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Board question

o A medical treatment has unknown probability 8 of success.

o We assume treatment has prior f(6) ~ Beta(5,5).

@ Suppose you test it on 10 patients and have 6 successes. Find the
posterior distribution on 6. ldentify the type of the posterior pdf

@ Suppose you recorded the order of the results and got SSSFFSSSFF.
Find the posterior based on this new data.
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