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Today’s agenda

Today’s lecture

Review

Use Bayes’ theorem to compute posterior pmf with discrete pmf

priors.

Use Bayes’ theorem to compute posterior pfd with continuous pdf

priors
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Bayesian inference

Probability model p(y | θ) depends on a set of parameters θ.

θ is unknown and we would like to learn about θ.

Let y be the observed data, assumed to be generated by this

probability model, p(y | θ)

In Bayesian statistics, we assign probabilities on both the parameters

θ and data y
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Bayesian inference

So we start with a probability distribution for the parameters p(θ),

called the prior distribution.

θ is either discrete or continuous random variable. Hence, p(θ) is

either a pmf or pdf

The prior is a subjective distribution, based on experimenter’s belief,

and is formulated before the data y are seen.
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Bayesian inference

Let y be the observed data.

We then update the prior distribution (pmf or pdf) to a posterior

distribution (pmf or pdf) for θ, p(θ | y), using Bayes’ theorem

p(θ | y) =
p(θ) p(y | θ)

p(y)
,

where the observed data enters through the likelihood p(y | θ).

p(y) is the normalising constant, which is given by

p(y) =

∫
p(θ′) p(y | θ′) dθ′ or

∑
θ′

p(θ′) p(y | θ′)

p(y) does not depend on θ

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



What does it mean?

p(θ | y) ∝ p(θ) p(y | θ) (1)

Posterior ∝ prior × likelihood

p(y | θ) is the likelihood and it the probability of data y given the

true θ.

Start with initial beliefs/information about θ, p(θ) - this is the prior

distribution formulated before the data are seen.

Bayesian updating: Update the prior distribution using the data y ,

using (1).

The updated prior, p(θ | y) is called the posterior distribution .

We base our inferences about θ based on this posterior distribution.
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Bayesian updating with discrete data, discrete prior

parameter θ discrete with values θ1 and θ2 and prior pmf p(θ)

Discrete data x

Discrete likelihood, p(x |θ)

Posterior pmf: p(θ1|x), p(θ2|x)

Hypothesis prior likelihood Bayes numerator posterior

θ p(θ) p(x |θ) p(x |θ)p(θ) p(θ|x)

θ1 p(θ1) p(x |θ1) p(x |θ1) p(θ1) p(θ1|x)

θ2 p(θ2) p(x |θ2) p(x |θ2) p(θ2) p(θ2|x)

Total 1 NOT SUM TO 1 p(x) 1

Law of total probability: p(x) = p(x |θ1)p(θ1) + p(x |θ2)p(θ2).

Bayes’ theorem: p(θ1|x) = p(x|θ1)p(θ1)
p(x) , p(θ2|x) = p(x|θ2)p(θ2)

p(x)

posterior =
likelihood× prior

total prob. of data
.
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Board Question: Coins

There are three types of coins which have different probabilities of
heads

Type A coins are fair, with probability 0.5 of heads.

Type B are bent and have probability 0.6 of heads.

Type C are bent and have probability 0.9 of heads.

Suppose I have a drawer containing 5 coins: 2 of type A, 2 of type

B, and 1 of type C. I pick a coin at random, and without showing

you the coin I flip it once and get heads.

Make a Bayesian update table and compute the posterior pmf that

the chosen coin is each of the three coins.
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In the previous lecture, we have done Bayesian updating when we

had a finite number of hypotheses or a discrete parameter θ e.g.,

- in the diagnostic example had 2 hypotheses (HIV +ve, HIV -ve),

- in the coin example we had 3 hypothesis (A, B and C).

In this topic we will study Bayesian updating where there is a

continuous range of hypotheses, i.e., θ is a continuous random

variable.

The Bayesian updating will be essentially the same, based on the

Bayes’ theorem

posterior ∝ prior × likelihood
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Examples with continuous parameters

Suppose we have a medical treatment for a disease than can succeed

or fail with probability q. Then q is a continuous quantity between 0

and 1.

The lifetime of a certain light bulb T is modeled as an exponential

distribution exp(λ) with unknown λ. We can assume that λ takes

any value greater than 0.
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Baysian updating: Discrete likelihoods, continuous priors

θ : continuous parameter with prior pdf p(θ) and range [a, b].

x : random discrete data

discrete likelihood: p(x |θ)

posterior pdf: p(θ|x)

By Bayes’ theorem we update the prior pdf to a posterior pdf

p(θ|x) =
p(x |θ)p(θ)

p(x)
=

p(x |θ)p(θ)∫ b

a
p(x |θ)p(θ)dθ

.

Law of total probability: p(x) =
∫ b

a
p(x |θ)p(θ) dθ.
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Baysian updating: Discrete likelihoods, continuous priors

p(x) does not depend on θ and serves as the normalising constant

so that p(θ|x) is a proper pdf and integrates to 1.

Hence, we can express Bayes’ theorem in the form

p(θ|x) ∝ p(x |θ)p(θ).

posterior ∝ prior × likelihood
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Bayesian inference

p(θ | x) ∝ p(θ) p(x | θ)

p(θ) - initial beliefs/information about θ, the prior pdf.

p(x | θ) - the likelihood for observed data x with parameters θ.

Update information about θ using the likelihood.

The resulting pdf p(θ | x) is called the posterior pdf of θ

posterior ∝ prior × likelihood
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Bayesian updating: Discrete likelihoods, continuous priors

Sometimes, it is better to use p(θ)dθ to work with probabilities

instead of densities

e.g the prior probability that θ is in a small interval of width dθ

around 0.5 if p(0.5)dθ.

In this case, the Bayes’ theorem is

p(θ|x)dθ =
p(x |θ)p(θ)dθ

p(x)
=

p(x |θ)p(θ)dθ∫ b

a
p(x |θ)p(θ) dθ

.
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Bayesian updating: Discrete likelihoods, continuous priors

θ : continuous parameter with prior pdf p(θ) and range [a, b].

x : random discrete data

likelihood: p(x |θ)

Bayesian updating table

Hypothesis prior prob likelihood Bayes numerator posterior prob. p(θ|x)dθ

θ p(θ)dθ p(x |θ) p(x |θ)p(θ)dθ p(x|θ)p(θ)dθ
p(x)

Total
∫ b

a
p(θ)dθ = 1 p(x) =

∫ b

a
p(x |θ)p(θ)dθ 1

The posterior density p(θ|x) is obtained by removing dθ from the

posterior probability in the table.
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Bayesian updating: Discrete likelihoods, continuous priors

Example: Binomial data, Beta prior

A biased coin has probability of heads q which is unknown.

We toss the coin n times and observe k heads (This is my data

x = k).

The binomial likelihood for this problem:

p(k | q) =

(
n

k

)
qk(1− q)n−k

For Bayesian inference, we need to specify a prior distribution for q.

q is a continuous quantity between 0 and 1.

What is a possible probability distribution for q (or family of

distributions)?
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Bayesian updating: Discrete likelihoods, continuous priors

Example: Binomial data, Beta prior

The family of Beta distributions seems a natural choice for a prior

distribution for q, since it describes continuous random variables

with support on [0, 1].

If q ∼ Beta(α, β), its probability density function is

f (q) =
qα−1(1− q)β−1

B(α, β)
, 0 ≤ q ≤ 1,

where B is the Beta function and α and β are parameters,

B(α, β) =

∫ 1

0

xα−1(1− x)β−1 dx

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
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Beta distributions

Probability density

functions.

If q ∼ Beta(α, β)

E (q) =
α

α + β
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Bayesian updating: Discrete likelihoods, continuous priors

Example: Binomial data, Beta prior

Bayesian updating:

posterior ∝ prior × likelihood

The posterior distribution p(q|x) is proportional to

p(q | k) ∝ qk+α−1(1− q)n−k+β−1

We recognise this to have the form of a beta distribution, so the

posterior is a beta distribution, beta(k + α, n − k + β).

Hence, the normalising constant must be 1/B(k + α, n − k + β).
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Bayesian updating: Discrete likelihoods, continuous priors

The actual, normalized pdf is

p(q | k) =
qk+α−1(1− q)n−k+β−1

B(k + α, n − k + β)
,

the pdf of a Beta(k + α, n − k + β) r.v. (Remember: the random

variable is q and k is fixed).

Bayesian updating: We update the prior Beta(α, β) to posterior

Beta(k + α, n − k + β).
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Bayesian updating table: Discrete likelihoods, continuous

priors

Example: Binomial data, Beta prior

Y ∼ Binom(n,q), with q unknown

Continuous hypotheses q in [0, 1].

Data y

Prior p(q)

Likelihood p(y |q)

Hypothesis prior prob. likelihood Bayes numerator posterior prob.

q Beta(α, β)dq binomial(n, q) cqk+α−1(1− q)n−k+β−1dq Beta(k + α, n − k + β)dq

Total 1 T =
∫ 1

0
cqk+α−1(1− q)n−k+β−1dq 1

The posterior density is Beta(k + α, n − k + β)

Note: We don’t need to compute T . Once we know the posterior is

of the form cqk+α−1(1− q)n−k+β−1 we have to find c that makes it a

proper density. In this case c = 1/Beta(k + α, n − k + β)
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Unknown parameters and prior parameters

Remarks:

We need to distinguish between the parameters we are estimating,

which we generally have denoted by θ and the parameters for the

prior distribution(s).

In this binomial example, q is uncertain: we have prior and posterior

distributions for q.

The parameters of the prior distribution, here α and β, are taken as

fixed.
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Board question: bent coin

Bent coin with unknown probability θ of heads

Prior: p(θ) = 2θ on [0, 1]

Data: toss and get heads

Compute the Bayesian update table.

Find the posterior pdf to this data.
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Posterior mean

In Bayesian how would you choose a particular value of q?

A natural estimate for q is the mean of the posterior distribution

p(q|k), called the posterior mean.

For the binomial case with Beta(α, β) prior, the posterior mean is

q̂B = E (q | k) =
k + α

n + α + β
.

The prior distribution has mean α/(α + β) which would be our best

estimate of q without having observed the data.

Ignoring the prior, we would estimate q using the maximum

likelihood estimate (MLE)

q̂ =
k

n

The Bayes’ estimate q̂B combines all of this information.
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Posterior mean

Note that we can rewrite q̂b as

q̂B =
n

n + α + β

(
k

n

)
+

α + β

n + α + β

(
α

α + β

)
.

Thus q̂B is a linear combination of the prior mean and the MLE, with

the weights being determined by n, α and β
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Flat priors

One important prior is called flat prior or uniform prior.

A flat prior assumes that every hypothesis is equally probable.

For example if q has range [0, 1], then p(q) = 1 is a flat prior.

E.g. a uniform distribution on [0, 1] is Beta(1, 1)

So, posterior distribution is Beta(k + 1, n − k + 1)

Posterior mean: E (q | k) =
k + 1

n + 2
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Board question

Bent coin with unknown probability θ of heads

Flat prior: p(θ) = 1 on [0, 1]

Data: toss 27 times and get 15 heads and 12 tails.

Compute the Bayesian update table.

Give the integral for the normalising factor but do not compute it.

Call its value T and give the posterior pdf in terms of T .

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Board question

A medical treatment has unknown probability θ of success.

We assume treatment has prior f (θ) ∼ Beta(5, 5).

1 Suppose you test it on 10 patients and have 6 successes. Find the

posterior distribution on θ. Identify the type of the posterior pdf
2 Suppose you recorded the order of the results and got SSSFFSSSFF.

Find the posterior based on this new data.
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