# Lecture 2B MTH6102: Bayesian Statistical Methods

Eftychia Solea

Queen Mary University of London

2023

## Today's agenda

#### Today's lecture

- Review
- Use Bayes' theorem to compute posterior pmf with discrete pmf priors.
- Use Bayes' theorem to compute posterior pfd with continuous pdf priors

- Probability model  $p(y \mid \theta)$  depends on a set of parameters  $\theta$ .
- $\bullet$   $\theta$  is unknown and we would like to learn about  $\theta$ .
- Let y be the observed data, assumed to be generated by this probability model,  $p(y \mid \theta)$
- $m{\bullet}$  In Bayesian statistics, we assign probabilities on both the parameters  $m{\theta}$  and data y

- So we start with a probability distribution for the parameters  $p(\theta)$ , called the prior distribution.
- $\theta$  is either discrete or continuous random variable. Hence,  $p(\theta)$  is either a pmf or pdf
- The prior is a subjective distribution, based on experimenter's belief, and is formulated before the data y are seen.

- Let y be the observed data.
- We then update the prior distribution (pmf or pdf) to a posterior distribution (pmf or pdf) for  $\theta$ ,  $p(\theta \mid y)$ , using Bayes' theorem

$$p(\theta \mid y) = \frac{p(\theta) p(y \mid \theta)}{p(y)},$$

where the observed data enters through the likelihood  $p(y \mid \theta)$ .

• p(y) is the normalising constant, which is given by

$$p(y) = \int p(\theta') p(y \mid \theta') d\theta' \text{ or } \sum_{\theta'} p(\theta') p(y \mid \theta')$$

• p(y) does not depend on  $\theta$ 

#### What does it mean?

$$p(\theta \mid y) \propto p(\theta) p(y \mid \theta) \tag{1}$$

#### Posterior $\propto$ prior $\times$ likelihood

- $p(y \mid \theta)$  is the likelihood and it the probability of data y given the true  $\theta$ .
- Start with initial beliefs/information about  $\theta$ ,  $p(\theta)$  this is the prior distribution formulated before the data are seen.
- Bayesian updating: Update the prior distribution using the data y, using (1).
- The updated prior,  $p(\theta \mid y)$  is called the posterior distribution .
- ullet We base our inferences about heta based on this posterior distribution.

## Bayesian updating with discrete data, discrete prior

- parameter  $\theta$  discrete with values  $\theta_1$  and  $\theta_2$  and prior pmf  $p(\theta)$
- Discrete data x
- Discrete likelihood,  $p(x|\theta)$
- Posterior pmf:  $p(\theta_1|x)$ ,  $p(\theta_2|x)$

| Hypothesis | prior         | likelihood      | Bayes numerator             | posterior       |
|------------|---------------|-----------------|-----------------------------|-----------------|
| $\theta$   | $p(\theta)$   | $p(x \theta)$   | $p(x \theta)p(\theta)$      | $p(\theta x)$   |
| $\theta_1$ | $p(\theta_1)$ | $p(x \theta_1)$ | $p(x \theta_1) p(\theta_1)$ | $p(\theta_1 x)$ |
| $\theta_2$ | $p(\theta_2)$ | $p(x \theta_2)$ | $p(x \theta_2) p(\theta_2)$ | $p(\theta_2 x)$ |
| Total      | 1             | NOT SUM TO 1    | p(x)                        | 1               |

- Law of total probability:  $p(x) = p(x|\theta_1)p(\theta_1) + p(x|\theta_2)p(\theta_2)$ .
- Bayes' theorem:  $p(\theta_1|x) = \frac{p(x|\theta_1)p(\theta_1)}{p(x)}$ ,  $p(\theta_2|x) = \frac{p(x|\theta_2)p(\theta_2)}{p(x)}$

$$\mathsf{posterior} = \frac{\mathsf{likelihood} \times \mathsf{prior}}{\mathsf{total} \ \mathsf{prob.} \ \mathsf{of} \ \mathsf{data}}.$$

#### **Board Question: Coins**

- There are three types of coins which have different probabilities of heads
  - Type A coins are fair, with probability 0.5 of heads.
  - Type B are bent and have probability 0.6 of heads.
  - Type C are bent and have probability 0.9 of heads.

Suppose I have a drawer containing 5 coins: 2 of type A, 2 of type B, and 1 of type C. I pick a coin at random, and without showing you the coin I flip it once and get heads.

 Make a Bayesian update table and compute the posterior pmf that the chosen coin is each of the three coins.

- ullet In the previous lecture, we have done Bayesian updating when we had a finite number of hypotheses or a discrete parameter heta e.g.,
  - in the diagnostic example had 2 hypotheses (HIV +ve, HIV -ve),
  - in the coin example we had 3 hypothesis (A, B and C).
- In this topic we will study Bayesian updating where there is a continuous range of hypotheses, i.e.,  $\theta$  is a continuous random variable.
- The Bayesian updating will be essentially the same, based on the Bayes' theorem

posterior  $\propto$  prior  $\times$  likelihood

#### Examples with continuous parameters

- Suppose we have a medical treatment for a disease than can succeed or fail with probability q. Then q is a continuous quantity between 0 and 1.
- The lifetime of a certain light bulb T is modeled as an exponential distribution  $\exp(\lambda)$  with unknown  $\lambda$ . We can assume that  $\lambda$  takes any value greater than 0.

- $\theta$  : continuous parameter with prior pdf  $p(\theta)$  and range [a, b].
- x : random discrete data
- discrete likelihood:  $p(x|\theta)$
- posterior pdf:  $p(\theta|x)$
- By Bayes' theorem we update the prior pdf to a posterior pdf

$$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)} = \frac{p(x|\theta)p(\theta)}{\int_a^b p(x|\theta)p(\theta)d\theta}.$$

• Law of total probability:  $p(x) = \int_a^b p(x|\theta)p(\theta) d\theta$ .

- p(x) does not depend on  $\theta$  and serves as the normalising constant so that  $p(\theta|x)$  is a proper pdf and integrates to 1.
- Hence, we can express Bayes' theorem in the form

$$p(\theta|x) \propto p(x|\theta)p(\theta)$$
.

posterior  $\propto$  prior  $\times$  likelihood

$$p(\theta \mid x) \propto p(\theta) p(x \mid \theta)$$

- $p(\theta)$  initial beliefs/information about  $\theta$ , the prior pdf.
- $p(x \mid \theta)$  the likelihood for observed data x with parameters  $\theta$ .
- Update information about  $\theta$  using the likelihood.
- The resulting pdf  $p(\theta \mid x)$  is called the posterior pdf of  $\theta$

posterior  $\propto$  prior  $\times$  likelihood

- Sometimes, it is better to use  $p(\theta)d\theta$  to work with probabilities instead of densities e.g the prior probability that  $\theta$  is in a small interval of width  $d\theta$  around 0.5 if  $p(0.5)d\theta$ .
- In this case, the Bayes' theorem is

$$p(\theta|x)d\theta = \frac{p(x|\theta)p(\theta)d\theta}{p(x)} = \frac{p(x|\theta)p(\theta)d\theta}{\int_{a}^{b} p(x|\theta)p(\theta)d\theta}.$$

- $\theta$ : continuous parameter with prior pdf  $p(\theta)$  and range [a, b].
- x : random discrete data
- likelihood:  $p(x|\theta)$

#### Bayesian updating table

| Hypothesis | prior prob                           | likelihood    | Bayes numerator                               | posterior prob. $p(\theta x)d\theta$       |
|------------|--------------------------------------|---------------|-----------------------------------------------|--------------------------------------------|
| θ          | $p(\theta)d\theta$                   | $p(x \theta)$ | $p(x \theta)p(\theta)d\theta$                 | $\frac{p(x \theta)p(\theta)d\theta}{p(x)}$ |
| Total      | $\int_{a}^{b} p(\theta) d\theta = 1$ |               | $p(x) = \int_a^b p(x \theta)p(\theta)d\theta$ | 1                                          |

• The posterior density  $p(\theta|x)$  is obtained by removing  $d\theta$  from the posterior probability in the table.

#### Example: Binomial data, Beta prior

- A biased coin has probability of heads q which is unknown.
- We toss the coin n times and observe k heads (This is my data x = k).
- The binomial likelihood for this problem:

$$p(k \mid q) = \binom{n}{k} q^k (1-q)^{n-k}$$

- $\bullet$  For Bayesian inference, we need to specify a prior distribution for q.
- q is a continuous quantity between 0 and 1.
- What is a possible probability distribution for q (or family of distributions)?

#### Example: Binomial data, Beta prior

- The family of Beta distributions seems a natural choice for a prior distribution for q, since it describes continuous random variables with support on [0, 1].
- If  $q \sim \text{Beta}(\alpha, \beta)$ , its probability density function is

$$f(q) = \frac{q^{\alpha-1}(1-q)^{\beta-1}}{B(\alpha,\beta)}, \ 0 \le q \le 1,$$

where B is the Beta function and  $\alpha$  and  $\beta$  are parameters,

$$B(\alpha, \beta) = \int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx$$
$$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$$

#### Beta distributions

- Probability density functions.
- If  $q \sim \text{Beta}(\alpha, \beta)$

$$E(q) = \frac{\alpha}{\alpha + \beta}$$



#### Example: Binomial data, Beta prior

Bayesian updating:

posterior 
$$\propto$$
 prior  $\times$  likelihood

• The posterior distribution p(q|x) is proportional to

$$p(q \mid k) \propto q^{k+\alpha-1}(1-q)^{n-k+\beta-1}$$

- We recognise this to have the form of a beta distribution, so the posterior is a beta distribution, beta $(k + \alpha, n k + \beta)$ .
- Hence, the normalising constant must be  $1/B(k+\alpha, n-k+\beta)$ .

The actual, normalized pdf is

$$p(q \mid k) = \frac{q^{k+\alpha-1}(1-q)^{n-k+\beta-1}}{B(k+\alpha, n-k+\beta)},$$

the pdf of a Beta $(k + \alpha, n - k + \beta)$  r.v. (**Remember:** the random variable is q and k is fixed).

• Bayesian updating: We update the prior Beta $(\alpha, \beta)$  to posterior Beta $(k + \alpha, n - k + \beta)$ .

#### Example: Binomial data, Beta prior

- $Y \sim \text{Binom}(n,q)$ , with q unknown
- Continuous hypotheses q in [0,1].
- Data y
- Prior p(q)
- Likelihood p(y|q)

| Hypothesis | prior prob.               | likelihood     | Bayes numerator                                       | posterior prob.                      |
|------------|---------------------------|----------------|-------------------------------------------------------|--------------------------------------|
| q          | Beta $(\alpha, \beta)$ dq | binomial(n, q) | $cq^{k+\alpha-1}(1-q)^{n-k+\beta-1}dq$                | Beta $(k + \alpha, n - k + \beta)dq$ |
| Total      | 1                         |                | $T = \int_0^1 cq^{k+\alpha-1} (1-q)^{n-k+\beta-1} dq$ | 1                                    |

- The posterior density is Beta $(k + \alpha, n k + \beta)$
- **Note:** We don't need to compute T. Once we know the posterior is of the form  $cq^{k+\alpha-1}(1-q)^{n-k+\beta-1}$  we have to find c that makes it a proper density. In this case  $c=1/\text{Beta}(k+\alpha,n-k+\beta)$

## Unknown parameters and prior parameters

#### Remarks:

- We need to distinguish between the parameters we are estimating, which we generally have denoted by  $\theta$  and the parameters for the prior distribution(s).
- In this binomial example, q is uncertain: we have prior and posterior distributions for q.
- The parameters of the prior distribution, here  $\alpha$  and  $\beta$ , are taken as fixed.

#### Board question: bent coin

- ullet Bent coin with unknown probability heta of heads
- Prior:  $p(\theta) = 2\theta$  on [0,1]
- Data: toss and get heads
- Compute the Bayesian update table.
- Find the posterior pdf to this data.

#### Posterior mean

#### In Bayesian how would you choose a particular value of q?

- A natural estimate for q is the mean of the posterior distribution p(q|k), called the posterior mean.
- ullet For the binomial case with Beta $(\alpha, \beta)$  prior, the posterior mean is

$$\hat{q}_{\mathrm{B}} = E(q \mid k) = \frac{k + \alpha}{n + \alpha + \beta}.$$

- The prior distribution has mean  $\alpha/(\alpha+\beta)$  which would be our best estimate of q without having observed the data.
- Ignoring the prior, we would estimate q using the maximum likelihood estimate (MLE)

$$\hat{q} = \frac{k}{n}$$

• The Bayes' estimate  $\hat{q}_{\rm B}$  combines all of this information.



#### Posterior mean

• Note that we can rewrite  $\hat{q}_b$  as

$$\hat{q}_{\mathrm{B}} = \frac{n}{n + \alpha + \beta} \left( \frac{k}{n} \right) + \frac{\alpha + \beta}{n + \alpha + \beta} \left( \frac{\alpha}{\alpha + \beta} \right).$$

• Thus  $\hat{q}_{\rm B}$  is a linear combination of the prior mean and the MLE, with the weights being determined by n,  $\alpha$  and  $\beta$ 

#### Flat priors

- One important prior is called flat prior or uniform prior.
- A flat prior assumes that every hypothesis is equally probable.
- For example if q has range [0,1], then p(q) = 1 is a flat prior.
- ullet E.g. a uniform distribution on [0,1] is Beta(1,1)
- So, posterior distribution is Beta(k+1, n-k+1)
- Posterior mean:  $E(q \mid k) = \frac{k+1}{n+2}$

## Board question

- ullet Bent coin with unknown probability heta of heads
- Flat prior:  $p(\theta) = 1$  on [0,1]
- Data: toss 27 times and get 15 heads and 12 tails.
- Compute the Bayesian update table.
- Give the integral for the normalising factor but do not compute it.
  Call its value T and give the posterior pdf in terms of T.

#### Board question

- ullet A medical treatment has unknown probability heta of success.
- We assume treatment has prior  $f(\theta) \sim \text{Beta}(5,5)$ .
  - ① Suppose you test it on 10 patients and have 6 successes. Find the posterior distribution on  $\theta$ . Identify the type of the posterior pdf
  - ② Suppose you recorded the order of the results and got SSSFFSSSFF. Find the posterior based on this new data.