Selected solutions to Problem set 2 (continued)

2 (2) This is an Initial value problem (IVP)
step 1. The characteristic lines are given by

$$
b x-a y=c \text { with } a=\pi, b=1
$$

i.e. $\quad x-\pi y=c \quad$ (characteristic line)

so the qeceral solution is
$u(x, y)=f(c)=f(x-\pi y)$, for any function f. (general solution)
step 2. Next we specify f using the initial value

$$
f(c)=u(x, 0)=x^{2} \text { when } y=0
$$

on the on the other hand.
when $y=0$, we get from the characteristic line elation that $x=C$

So

$$
f(c)=u(x, 0)=x^{2}=c^{2}
$$

plug into the expression of f to the general solution, we get

$$
u(x, y)=(x-\pi y)^{2}
$$

3. (1)

$$
\begin{aligned}
& \frac{\partial}{\partial x}\left(x+e^{t}\right)=1 \\
& \frac{\partial}{\partial t}\left(x+e^{t}\right)=e^{t}
\end{aligned}
$$

and $\frac{\partial}{\partial x}\left(x+e^{t}\right)+\frac{\partial}{\partial t}\left(x+e^{t}\right)=1+e^{t}$
so it is a solution.
(2). Step 1: Solve the general solution for the homogereal equation

$$
\widetilde{u}_{x}+\widetilde{u}_{t}=0
$$

get $\tilde{x}(x, t)=f(x-t)$, for any f
step 2: By the principle of superposition, and combinis step, the geveral solutition to the inhompenesurs equation is $u(x, t)=1+e^{t}+f(x-t)$, for any f

