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Mathematical formulation:

yi ≈ f(xi) ∀i ∈ {1,…, s}

Given input/output pairs                 find function     with{(xi, yi)}s
i=1 f

xi = (xi1, …, xid)

Important to notice how each  is a vector describing d features/variables xi
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5

yi ≈ f(xi) ∀i ∈ {1,…, s} How do we parametrise    ?f

Example: f(xi) = w0 +
d

∑
j=1

wjxij

Linear transformation of vector  with weights xi = (xi1, …, xid) w ∈ ℝd+1
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xi2
⋮
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∈ ℝd+1

= w⊤xi = x⊤
i wf(xi) = w0 +

d

∑
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w0
w1
w2
⋮
wd

∈ ℝd+1

Where this comes from?
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How do we choose  such that  ?w yi ≈ f(xi)

Notation: = ⟨w, xi⟩
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Notation:

Imagine  and : s = 3 d = 2

= ⟨w, xi⟩= w⊤xi = x⊤
i wf(xi) = w0 +

d

∑
j=1

wjxij
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Notation:

Imagine  and : s = 3 d = 2

= ⟨w, xi⟩= w⊤xi = x⊤
i wf(xi) = w0 +

d

∑
j=1

wjxij

y = Xw

y =
1 x11 x12

1 x21 x22

1 x31 x32

w0
w1
w2

→
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Notation:

Imagine  and : s = 3 d = 2

w0 + x11w1 + x12w2 = y1

w0 + x21w1 + x22w2 = y2

w0 + x31w1 + x32w2 = y3

= ⟨w, xi⟩= w⊤xi = x⊤
i wf(xi) = w0 +

d

∑
j=1

wjxij

y = Xw

y =
1 x11 x12

1 x21 x22

1 x31 x32

w0
w1
w2

→
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But is it realistic to assume ?s = d + 1

s ≫ d + 1 = 2

The system of linear equations has a unique solution if…?
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Instead we need to find an approximation that is optimal in some sense

mailto:n.perra@qmul.ac.uk


n.perra@qmul.ac.uk 10

Instead we need to find an approximation that is optimal in some sense

Example: Mean-Square Error (MSE)

MSE(w) :=
1
2s

s

∑
i=1

| f(xi) − yi |
2
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Instead we need to find an approximation that is optimal in some sense

Example: Mean-Square Error (MSE)

MSE(w) :=
1
2s

s

∑
i=1

| f(xi) − yi |
2

ŵ = arg min
w

MSE(w)

Obtain ‘optimal’ parameters    by minimising MSE:ŵ

How can we do this?
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Few remarks

MSE(def 1)(w) :=
1
2s

s

∑
i=1

| f(xi) − yi |
2
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1
2s

s

∑
i=1

| f(xi) − yi |
2

ŵ = arg min
w

MSE(def 1)(w) = arg min
w

MSE(def 2)(w)

MSE(def 2)(w) :=
1
s

s

∑
i=1

| f(xi) − yi |
2
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Few remarks

MSE(def 1)(w) :=
1
2s

s

∑
i=1

| f(xi) − yi |
2

ŵ = arg min
w

MSE(def 1)(w) = arg min
w

MSE(def 2)(w)

To find the arg min, we do not care really for the value of MSE(w), we seek 
the arguments ws that minimize it! So any constant of ws does not affect the 
search!

MSE(def 2)(w) :=
1
s

s

∑
i=1

| f(xi) − yi |
2
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How do we compute  ?ŵ

Example: f(xi) = w0 ∀i ∈ {1,…, s}, d = 0

MSE(w0) :=
1
2s

s

∑
i=1

|w0 − yi |
2MSE cost function:
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How do we compute  ?ŵ

We do what we did in 
school, we compute the 
derivative and set it to 
zero:

∇MSE(ŵ0) = MSE′￼(ŵ0) =
1
s

s

∑
i=1

(ŵ0 − yi) = 0
!
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2MSE cost function:
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How do we compute  ?ŵ

We do what we did in 
school, we compute the 
derivative and set it to 
zero:

∇MSE(ŵ0) = MSE′￼(ŵ0) =
1
s

s

∑
i=1

(ŵ0 − yi) = 0
!

Example: f(xi) = w0 ∀i ∈ {1,…, s}, d = 0

MSE(w0) :=
1
2s

s

∑
i=1

|w0 − yi |
2MSE cost function:

⇒ ŵ0 =
1
s

s

∑
i=1

yi

mailto:n.perra@qmul.ac.uk


n.perra@qmul.ac.uk 13

Example:

0 0.2 0.4 0.6 0.8 1
-2

-1

0

1

2

3

4

5

mailto:n.perra@qmul.ac.uk


n.perra@qmul.ac.uk 13

Example:

0 0.2 0.4 0.6 0.8 1
-2

-1

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1
-2

-1

0

1

2

3

4

5
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A slightly more complicated example:

f(xi) = w0 + w1xi ∀i ∈ {1,…, s}, d = 1
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A slightly more complicated example:

f(xi) = w0 + w1xi ∀i ∈ {1,…, s}, d = 1

MSE(w0, w1) :=
1
2s

s

∑
i=1

|w0 + w1xi − yi |
2MSE cost function:
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f(xi) = w0 + w1xi ∀i ∈ {1,…, s}, d = 1

MSE(w0, w1) :=
1
2s

s

∑
i=1

|w0 + w1xi − yi |
2MSE cost function:

⇒ ∇MSE = (
∂w0

MSE(w)
∂w1

MSE(w))
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A slightly more complicated example:

f(xi) = w0 + w1xi ∀i ∈ {1,…, s}, d = 1

MSE(w0, w1) :=
1
2s

s

∑
i=1

|w0 + w1xi − yi |
2MSE cost function:

⇒ ∇MSE = (
∂w0

MSE(w)
∂w1

MSE(w)) ∇MSE =
1
s (

∑s
i=1 (w0 + w1xi − yi)

∑s
i=1 (w0 + w1xi − yi)xi)⇒
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∑s
i=1 (w0 + w1xi − yi)xi)

16

= (0
0)!

⇒
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∇MSE =
1
s (

∑s
i=1 (w0 + w1xi − yi)

∑s
i=1 (w0 + w1xi − yi)xi)

16

= (0
0)!

⇒
xŵ0 +

∥x∥2

s
ŵ1 =

⟨y, x⟩
s

ŵ0 + xŵ1 = y
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∇MSE =
1
s (

∑s
i=1 (w0 + w1xi − yi)

∑s
i=1 (w0 + w1xi − yi)xi)

16

= (0
0)!

⇒
xŵ0 +

∥x∥2

s
ŵ1 =

⟨y, x⟩
s

ŵ0 + xŵ1 = y

⇒
ŵ1 =

⟨x, y⟩ − sxy
∥x∥2 − sx2

ŵ0 =
y∥x∥2 − x⟨x, y⟩

∥x∥2 − sx2
for ∥x∥2 ≠ sx2
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0)!

⇒
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s
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s
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y :=
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for
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⇒
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⇔

1 x1

1 x2
⋮ ⋮
1 xs

(w0
w1) ≈

y1
y2
⋮
ys

=:X

=:w
⏟

=:y

f(xi) = w0 + w1xi ≈ yi ∀i ∈ {1,…, s}
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⇔

1 x1

1 x2
⋮ ⋮
1 xs

(w0
w1) ≈

y1
y2
⋮
ys

=:X

=:w
⏟

=:y

MSE(w) =
1
2s

s

∑
i=1

(Xw)i − yi
2

f(xi) = w0 + w1xi ≈ yi ∀i ∈ {1,…, s}
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1
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∑
i=1

(Xw)i − yi
2

X⊤Xŵ = X⊤y∇MSE(ŵ) = 0
! ⇒ ŵ = (X⊤X)−1X⊤y⇒

=
1
2s

∥Xw − y∥2

f(xi) = w0 + w1xi ≈ yi ∀i ∈ {1,…, s}

More in general? y = Xw

Try to prove this!
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What about other cost functions?

21

MAE(w) :=
1
s

s

∑
i=1

(Xw)i − yiMean absolute error:

• More robust to outliers

• Not differentiable —> more difficult to compute minimiser
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Why did we come up with the least squares function in order to fit our 
model function to the data?
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Why did we come up with the least squares function in order to fit our 
model function to the data?

Choice was basically arbitrary until now!
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Statistical motivation: we can write

yi = ⟨xi, w⟩ εi+

A statistical motivation

ϵi = yi − ⟨xi, w⟩

Or:
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A statistical motivation
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Observation:  is an instance of a normal-distributed random variable 
with mean zero and variance 

εi
σ2

ρ(εi |0, σ2) =
1

2πσ2
e− ε2

i
2σ2

Probability density function

A statistical motivation
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i
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Assumption: all ’s are i.i.d., i.e.εi

ρ(εi, εj |0, σ2) = ρ(εi |0, σ2) ρ(εj |0, σ2) for .i ≠ j

A statistical motivation

ρ(εi |0, σ2) =
1

2πσ2
e− ε2

i
2σ2

Probability density function
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ρ(ε1, ε2, …, εs |0, σ2) = (2πσ2)− s
2

s

∏
i=1

e− ε2
i

2σ2

A statistical motivation
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ρ(ε1, ε2, …, εs |0, σ2) = (2πσ2)− s
2

s

∏
i=1

e− ε2
i

2σ2 = (2πσ2)− s
2

s

∏
i=1

e− (yi − ⟨xi , w⟩)2

2σ2
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ρ(ε1, ε2, …, εs |0, σ2) = (2πσ2)− s
2

s

∏
i=1

e− ε2
i

2σ2 = (2πσ2)− s
2

s

∏
i=1

e− (yi − ⟨xi , w⟩)2

2σ2

= ρ(y1, …, ys |⟨x1, w⟩, …, ⟨xs, w⟩, σ2)

A statistical motivation
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A statistical motivation
⟨xi, w⟩
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Choose parameters  such that they maximise the likelihood , for 

 and . 
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A statistical motivation
⟨xi, w⟩



28

Statistical motivation: yi=εi −

Choose parameters  such that they maximise the likelihood , for 

 and . 
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Statistical motivation: yi=εi −

Choose parameters  such that they maximise the likelihood , for 

 and . 

w = ŵ ρ(y |Xw, σ2)

y := (y1, …, ys)⊤ X :=

x11 x12 … x1(d+1)

x21 ⋱ ⋮
⋮

xs1 … xs(d+1)

Alternative: choose  such that it minimises the negative log-likelihood, i.e.ŵ

ŵ = arg min
w∈ℝd+1

{−log(ρ(y |Xw, σ2))}

A statistical motivation
⟨xi, w⟩
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A statistical motivation
ŵ = arg min

w∈ℝd+1
{−log(ρ(y |Xw, σ2))}
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= arg min
w∈ℝd+1

−log (
s

∏
i=1

ρ(yi |⟨xi, w⟩, σ2))

A statistical motivation
ŵ = arg min

w∈ℝd+1
{−log(ρ(y |Xw, σ2))}
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= arg min
w∈ℝd+1

−log (
s

∏
i=1

ρ(yi |⟨xi, w⟩, σ2))
= arg min

w∈ℝd+1 {−
s

∑
i=1

log (ρ(yi |⟨xi, w⟩, σ2))}

= arg min
w∈ℝd+1 { 1

2σ2

s

∑
i=1

(yi − ⟨xi, w⟩)2 + const} ρ(yi |⟨xi, w⟩, σ2) =
1

2πσ2
e− (yi − ⟨xi, w⟩)2

2σ2

A statistical motivation
ŵ = arg min

w∈ℝd+1
{−log(ρ(y |Xw, σ2))}
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ŵ = arg min
w∈ℝd+1 { 1

2σ2

s

∑
i=1

(yi − ⟨xi, w⟩)2 + const}
A statistical motivation
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ŵ = arg min
w∈ℝd+1 { 1

2σ2

s

∑
i=1

(yi − ⟨xi, w⟩)2 + const}
MSE function:

MSE(w) =
1
2s

s

∑
i=1

(yi − ⟨xi, w⟩)2

A statistical motivation
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ŵ = arg min
w∈ℝd+1 { 1

2σ2

s

∑
i=1

(yi − ⟨xi, w⟩)2 + const}
MSE function:

MSE(w) =
1
2s

s

∑
i=1

(yi − ⟨xi, w⟩)2 arg min
w∈ℝd+1 {−log(ρ(y |Xw, σ2)}

⇒
= arg min

w∈ℝd+1
MSE(w)

A statistical motivation
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Regression revisited

31

Models can be too limited or too rich:

Too limited —> we cannot find a function that is a good fit to our data 

Too rich —> we find a function that fits the data too well

Too limited —> function is underfitting the data

Too rich —> function is overfitting the data

Both are issues, and difficult to address in practice, as we do not 
know what part of the data is signal and what is noise
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Fit one-parameter 
MSE model to 
match blue circles

Bishop 2006
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Example:

Fit one-parameter 
MSE model to 
match blue circles

Regardless of how many samples, we will never be able to fit the green curve!

Bishop 2006



Extended/Augmented feature vectors

33

The previous example seems to suggest that linear models are often too 
simple and tend to underfit



Extended/Augmented feature vectors

33

The previous example seems to suggest that linear models are often too 
simple and tend to underfit

We will see that quite the opposite is true, but first we discuss 
a remedy for the underfitting of linear models



Extended/Augmented feature vectors

33

The previous example seems to suggest that linear models are often too 
simple and tend to underfit

We will see that quite the opposite is true, but first we discuss 
a remedy for the underfitting of linear models

Standard trick: augment input with polynomial basis of degree    , i.e.d



Extended/Augmented feature vectors

33

The previous example seems to suggest that linear models are often too 
simple and tend to underfit

We will see that quite the opposite is true, but first we discuss 
a remedy for the underfitting of linear models

Standard trick: augment input with polynomial basis of degree    , i.e.d

ϕ(xi) = (1 xi x2
i … xd

i )T
consider



Extended/Augmented feature vectors

33

The previous example seems to suggest that linear models are often too 
simple and tend to underfit

We will see that quite the opposite is true, but first we discuss 
a remedy for the underfitting of linear models

Standard trick: augment input with polynomial basis of degree    , i.e.d

ϕ(xi) = (1 xi x2
i … xd

i )T
consider

f(xi, w) = ⟨ϕ(xi), w⟩ =
d

∑
k=0

xk
i wkand the linear model 



Extended/Augmented feature vectors

33

The previous example seems to suggest that linear models are often too 
simple and tend to underfit

We will see that quite the opposite is true, but first we discuss 
a remedy for the underfitting of linear models

Standard trick: augment input with polynomial basis of degree    , i.e.d

ϕ(xi) = (1 xi x2
i … xd

i )T
consider

f(xi, w) = ⟨ϕ(xi), w⟩ =
d

∑
k=0

xk
i wkand the linear model 

w ∈ ℝd+1
xi ∈ ℝ
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Extended/Augmented feature vectors

Φ(X) =

ϕ(x1)T

ϕ(x2)T

⋮
ϕ(xs)T

∈ ℝs×(d+1)Notation:

f(xi, w) = ⟨ϕ(xi), w⟩ =
d

∑
k=0

xk
i wk

ϕ(xi) = (1 xi x2
i … xd

i )T
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Extended/Augmented feature vectors

Φ(X) =

ϕ(x1)T

ϕ(x2)T

⋮
ϕ(xs)T

∈ ℝs×(d+1)Notation:

ŵ = arg min
w∈ℝd+1 { 1

2s
Φ(X)w − y

2}
Modified MSE-problem:

f(xi, w) = ⟨ϕ(xi), w⟩ =
d

∑
k=0

xk
i wk

ϕ(xi) = (1 xi x2
i … xd

i )T
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d = 0 d = 1

Bishop 2006
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d = 3 d = 9

Bishop 2006
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From under- to overfitting
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d = 3

d = 9

d = 0

d = 1

function is underfitting

function is underfitting

function seems to fit reasonably well

function is overfitting

What can we do to prevent overfitting?



From under- to overfitting
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We could increase the no. of samples    :s

d = 15 d = 100

Bishop 2006

Or we could use regularisation (next week’s topic)
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ŵ = arg min
w∈ℝd+1

MSE(w) = arg min
w∈ℝd+1 { 1

2s
∥ w − y∥2}X



Minimisers & the role of convexity

40

We have made the following assumption:

In order to compute

we can solve

∇MSE(ŵ) = 0 ⇔

ŵ = arg min
w∈ℝd+1

MSE(w) = arg min
w∈ℝd+1 { 1

2s
∥ w − y∥2}X

X⊤Xŵ = X⊤y
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Or

In order to compute

ŵ = arg min
w∈ℝd+1

MSE(w) = arg min
w∈ℝd+1 { 1

2s
∥

we can solve

∇MSE(ŵ) = 0 ⇔ ŵΦ(X)⊤Φ(X) Φ(X)⊤= y

w − y∥2}Φ(X)

Minimisers & the role of convexity
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This raises a couple of questions:

Minimisers & the role of convexity
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This raises a couple of questions:

1. Why is computing

ŵ = arg min
w∈ℝd+1

MSE(w)

equivalent to solving
∇MSE(ŵ) = 0 ?

Minimisers & the role of convexity
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This raises a couple of questions:

1. Why is computing

ŵ = arg min
w∈ℝd+1

MSE(w)

equivalent to solving
∇MSE(ŵ) = 0 ?

2. Does a solution  always exist?ŵ

3. Is the solution  unique?ŵ

Minimisers & the role of convexity
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2. Does a solution  always exist?


3. Is the solution  unique?

ŵ

ŵ

1. For now we assume the first condition to be true (we will verify this later)
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2. Does a solution  always exist?


3. Is the solution  unique?

ŵ

ŵ

1. For now we assume the first condition to be true (we will verify this later)

X⊤Xŵ = X⊤y

This is equivalent to asking when does a solution to 

exist?

Minimisers & the role of convexity
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2. Does a solution  always exist?


3. Is the solution  unique?

ŵ

ŵ

1. For now we assume the first condition to be true (we will verify this later)

X⊤Xŵ = X⊤y

This is equivalent to asking when does a solution to 

exist?

Yes! Proof in the notes, not examinable

Minimisers & the role of convexity
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2. Does a solution  always exist?


3. Is the solution  unique?

ŵ

ŵ

1. For now we assume the first condition to be true

Minimisers & the role of convexity
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2. Does a solution  always exist?


3. Is the solution  unique?

ŵ

ŵ

1. For now we assume the first condition to be true

Before we can answer this, we need to introduce 
the concept of convexity first

Minimisers & the role of convexity
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A set    is called convex if for all x, y ∈ C

z := λx + (1 − λ)y

the element

is also included in   , i.e.          , for any              . λ ∈ [0,1]z ∈ C

C

C
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What is a convex set?

x
y

CA set
A set    is called convex if for all x, y ∈ C

z := λx + (1 − λ)y

the element

is also included in   , i.e.          , for any              . λ ∈ [0,1]z ∈ C

C

C

z
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Which sets are convex?

(a) (b) (c) (d)
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What is a convex function?

Convexity of a cost function
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What is a convex function?

f : C → ℝA function over a convex set    is called convex if

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

is satisfied for all              and              .x, y ∈ C λ ∈ [0,1]

C

Convexity of a cost function
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Convexity of a cost function
©

W
ikim

edia com
m

ons
( Here

          ,

          ,

and

          )

t = λ
x1 = x

x2 = y
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Why is convexity useful?

Convexity of a cost function
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Why is convexity useful?

f( ̂x) ≤ f(x) ∀x ∈ C

Suppose     with                , then∇f( ̂x) = 0̂x

Convexity of a cost function



54

Why is convexity useful?

f( ̂x) ≤ f(x) ∀x ∈ C

Suppose     with                , then∇f( ̂x) = 0̂x

f(x) = x2

©Wikimedia commons

Convexity of a cost function
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Why is convexity useful?

f( ̂x) ≤ f(x) ∀x ∈ C

Suppose     with                , then∇f( ̂x) = 0̂x

Global minima can be determined by computing ∇f( ̂x) = 0

f(x) = x2

©Wikimedia commons

Convexity of a cost function
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Why is convexity useful?

f( ̂x) ≤ f(x) ∀x ∈ C

Suppose     with                , then∇f( ̂x) = 0̂x

Proof in 1D:

Convexity of a cost function
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Why is convexity useful?

f( ̂x) ≤ f(x) ∀x ∈ C

Suppose     with                , then∇f( ̂x) = 0̂x

Proof in 1D: f(λx + (1 − λ) ̂x) ≤ λf(x) + (1 − λ)f( ̂x)

Convexity of a cost function
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Why is convexity useful?

f( ̂x) ≤ f(x) ∀x ∈ C

Suppose     with                , then∇f( ̂x) = 0̂x

Proof in 1D: f(λx + (1 − λ) ̂x) ≤ λf(x) + (1 − λ)f( ̂x)

⇔ f( ̂x + λ(x − ̂x)) ≤ f( ̂x) + λ( f(x) − f( ̂x))

Convexity of a cost function
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Why is convexity useful?

f( ̂x) ≤ f(x) ∀x ∈ C

Suppose     with                , then∇f( ̂x) = 0̂x

Proof in 1D: f(λx + (1 − λ) ̂x) ≤ λf(x) + (1 − λ)f( ̂x)

⇔ f( ̂x + λ(x − ̂x)) ≤ f( ̂x) + λ( f(x) − f( ̂x))

⇔
f( ̂x + λ(x − ̂x)) − f( ̂x)

λ
≤ f(x) − f( ̂x)

Convexity of a cost function
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Why is convexity useful?

f( ̂x) ≤ f(x) ∀x ∈ C

Suppose     with                , then∇f( ̂x) = 0̂x

Proof in 1D: f(λx + (1 − λ) ̂x) ≤ λf(x) + (1 − λ)f( ̂x)

⇔ f( ̂x + λ(x − ̂x)) ≤ f( ̂x) + λ( f(x) − f( ̂x))

⇔
f( ̂x + λ(x − ̂x)) − f( ̂x)

λ
≤ f(x) − f( ̂x)

⇒ lim
λ→0

f( ̂x + λ(x − ̂x)) − f( ̂x)
λ

≤ f(x) − f( ̂x)

Convexity of a cost function



56

Proof in 1D, continued:
⇒ lim

λ→0

f( ̂x + λ(x − ̂x)) − f( ̂x)
λ

≤ f(x) − f( ̂x)

Convexity of a cost function
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Proof in 1D, continued:

lim
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f( ̂x + λ(x − ̂x)) − f( ̂x)
λ

= lim
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λ(x − ̂x)

= f′￼( ̂x) (x − ̂x)

⇒ lim
λ→0

f( ̂x + λ(x − ̂x)) − f( ̂x)
λ

≤ f(x) − f( ̂x)
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Proof in 1D, continued:

lim
λ→0

f( ̂x + λ(x − ̂x)) − f( ̂x)
λ

= lim
λ→0

(f( ̂x + λ(x − ̂x)) − f( ̂x))(x − ̂x)
λ(x − ̂x)

= f′￼( ̂x) (x − ̂x)

Hence, we conclude
f′￼( ̂x) (x − ̂x) ≤ f(x) − f( ̂x) ∀x ∈ C

⇒ lim
λ→0

f( ̂x + λ(x − ̂x)) − f( ̂x)
λ

≤ f(x) − f( ̂x)

Convexity of a cost function
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Proof in 1D, continued:

lim
λ→0

f( ̂x + λ(x − ̂x)) − f( ̂x)
λ

= lim
λ→0

(f( ̂x + λ(x − ̂x)) − f( ̂x))(x − ̂x)
λ(x − ̂x)

= f′￼( ̂x) (x − ̂x)

Hence, we conclude
f′￼( ̂x) (x − ̂x) ≤ f(x) − f( ̂x) ∀x ∈ C

f′￼( ̂x) = 0 ⇒ f( ̂x) ≤ f(x) ∀x ∈ Cand

∎

⇒ lim
λ→0

f( ̂x + λ(x − ̂x)) − f( ̂x)
λ

≤ f(x) − f( ̂x)

Convexity of a cost function
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ŵ = (XTX)−1XTywe obtain

If MSE is convex, we have MSE(ŵ) ≤ MSE(w) ∀w ∈ ℝn

Given MSE(w) =
1
2s

∥Xw − y∥2

by computing ∇MSE(ŵ) = 0



Global minima

57

ŵ = (XTX)−1XTywe obtain

If MSE is convex, we have MSE(ŵ) ≤ MSE(w) ∀w ∈ ℝn

Given MSE(w) =
1
2s

∥Xw − y∥2

by computing ∇MSE(ŵ) = 0

ŵ = arg min
w

MSE(w)Thus



58

2. Does a solution  always exist?


3. Is the solution  unique?

ŵ

ŵ

1. Why is computing

ŵ = arg min
w∈ℝd+1

MSE(w)

equivalent to solving
∇MSE(ŵ) = 0 ?

Minimisers & the role of convexity
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2. Does a solution  always exist?


3. Is the solution  unique?

ŵ

ŵ

1. Why is computing

ŵ = arg min
w∈ℝd+1

MSE(w)

equivalent to solving
∇MSE(ŵ) = 0 ?

What is left to show?

Minimisers & the role of convexity
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Exercise:

Show that MSE is convex!

(for linear regression model)



TUTORIAL ON FRIDAY
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We will discuss the solutions of Coursework 1

To make the most of these tutorials, attempt completing the coursework before!


