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Today’s agenda

Today’s lecture will cover

Bayes’ theorem

Use Bayes’ theorem in Bayesian inference to compute posterior

probabilities with discrete priors
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Review of Bayes’ theorem

Bayes’ theorem was formulated

by Thomas Bayes in the 18th

century.

It’s a basic part of probability

theory.

It’s also essential for Bayesian

statistics.
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Bayes’ theorem

Recall that Bayes’ theorem allows us to ‘invert’ conditional

probabilities.

Suppose we have events A and B, with p(B) > 0. Then

P(A | B) =
P(B | A) P(A)

p(B)
.

This is so because

P(A | B) =
P(A ∩ B)

P(B)

and hence

P(A | B) P(B) = P(A ∩ B) = P(B | A) P(A) multiplication rule
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Bayes’ theorem

Let Ω be the sample space. Suppose it is partitioned into a set of

mutually exclusive and exhaustive events A1,A2, . . . ,Am. (i.e. at

least one must occur and no two can occur).

The event B happens under any of the hypotheses Ai with a known

conditional probability P(B | Ai ).

Then we can write

P(Ai | B) =
P(B | Ai ) P(Ai )

P(B)

=
P(B | Ai ) P(Ai )∑m
j=1 P(B | Aj) P(Aj)

Why?
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Diagnostic test example

Why does it matter?

Suppose HIV has prevalence of 1/2000 in the population.

Suppose a test for HIV has 90% sensitivity and 95% specificity.

So a = P( test +ve | HIV +ve) = 0.9, and

b = P( test -ve | HIV -ve) = 0.95

Suppose a patient is screened and has a positive test.

Represent this information with a tree and use Bayes’ theorem to

compute

What is the probability that someone who tests positive is HIV

positive?

What is the probability that someone who tests positive is HIV

negative?
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Diagnostic test example

By Bayes’ Theorem

P(HIV +ve | test +ve) =
P( test +ve | HIV +ve)P(HIV +ve)

P( test +ve)
≈ 1%

much less than the sensitivity of the test, P( test +ve | HIV +ve),

but higher than P(HIV +ve) = 1/2000.

Mixing up P(A|B) with P(B|A) is the Prosecutor’s Fallacy; a small

probability of evidence given innocence need NOT mean a small

probability of innocence given evidence.
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Prosecutor’s fallacy: Sally Clark

After the sudden death of two baby sons, Sally Clark (above, center)

was sentenced to life in prison in 1999 in the UK.

Among other errors, expert witness Prof Roy Meadow (above right)

had wrongly interpreted the small probability of two cot deaths as a

small probability of Clark’s innocence.

After a long campaign, including refutation of Meadow’s statistics,

Clark was released and cleared in 2003

She was unable to recover from the effects of her conviction. She

died in 2007 from alcohol poisoning. See Convicted on Statistics?
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https://understandinguncertainty.org/node/545


Terminology and Bayes’ theorem in tabular form

Diagnostic test example

Data: the results of our experiment. In this case, the test is positive

Hypotheses: The hypotheses are the possible answers to the

question being asked. In this case they are: the subject is HIV

positive and the subject HIV negative.

Prior probabilities: The priors are the probabilities of the hypotheses

prior to collecting data. In this case, before seeing the test result,

the probability that someone is HIV +ve and the probability that

someone is HIV negative in the general population

P(HIV +ve) = 1/2000, P(HIV -ve) = 1999/2000
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Terminology and Bayes’ theorem in tabular form

Diagnostic test example

Likelihood: The likelihood is the probability of the data assuming

that the hypothesis is true. In this case there are two likelihoods,

one for each hypothesis

P(test +ve|HIV +ve) = 0.90 P(test +ve|HIV -ve) = 0.05

Posterior probabilities: The posteriors are the probabilities of the

hypotheses given the data. In this case

P(HIV +ve|test +ve) = 0.0089 P(HIV -ve|test +ve) = 0.9911
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Terminology and Bayes’ theorem in tabular form

Diagnostic test example

By Bayes’ theorem

P(HIV +ve|test +ve) =
P( test +ve | HIV +ve)P(HIV +ve)

P( test +ve)
.

P(HIV -ve|test +ve) =
P( test +ve | HIV -ve)P(HIV -ve)

P( test +ve)
.

posterior = likelihood×prior
total prob. of data .
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Terminology and Bayes’ theorem in tabular form

Diagnostic test example: Calculation using a Bayesian update table

We organise all of these neatly in a Bayesian updating table

Hypothesis Prior Likelihood Bayes numerator Posterior

HIV +ve 1/2000 0.90 0.00045 0.0089

HIV -ve 1999/2000 0.05 0.049975 0.9911

Total 1 NO SUM TO 1 0.050425 1

Law of total probability:P(data)=P(test +ve)= sum of Bayes

numerator column = 0.050425

Bayes theorem:

P(HIV +ve|test +ve) =
P( test +ve | HIV +ve)P(HIV +ve)

P( test +ve)

=
likelihood× prior

total prob. of data
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Bayes’ theorem

We can express Bayes’ theorem

P(hypothesis | data) =
P(data|hypothesis)P(hypothesis)

P(data)

With the terminology

posterior =
likelihood× prior

total prob. of data
.

With the data fixed, the denominator just serves to normalise the

posterior to 1. So we can express the Bayes’ theorem as

posterior ∝ likelihood× prior.

Bayesian updating: The process of going from the prior to the

posterior is called Bayesian updating. Bayesian updating uses the

data to update our initial beliefs about the hypotheses.
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Board Question: Coins

There are three types of coins which have different probabilities of
heads

Type A coins are fair, with probability 0.5 of heads.

Type B are bent and have probability 0.6 of heads.

Type C are bent and have probability 0.9 of heads.

Suppose I have a drawer containing 5 coins: 2 of type A, 2 of type

B, and 1 of type C. I pick a coin at random, and without showing

you the coin I flip it once and get heads.

Use Bayes’ theorem to compute the probabilities that the coin is

type A, type B or type C.

Identify the data, hypotheses, likelihoods, prior probabilities and

posterior probabilities.

Make a Bayesian update table and compute the posterior

probabilities that the chosen coin is each of the three coins.
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Board Question: Coins

Food for thought

Suppose that you didn’t know how many coins of each type were in

the drawer. You picked one at random and got heads.

How would you go about deciding which coin type if any was most

supported by the data?
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Board Question: Dice

Five dice in the drawer: 4-sided, 6-sided, 8-sided, 12-sided, 20-sided.

Suppose I picked one at random and, without showing it to you,

rolled it and reported a 13.

Make a Bayesian update table and compute the posterior

probabilities that the chosen die is each of the five dice.

Same question if I rolled a 5.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



The Bayes variation

Sometimes it is more convenient to work with random variables.

Let X and Y are continuous random variables with joint density

f (x , y)

f (x | y) =
f (y | x) f (x)

f (y)

=
f (y | x) f (x)∫

f (y | x ′) f (x ′) dx ′

The formulae follow from standard results about conditional and

marginal pdfs.
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The Bayes variation

If X and Y are discrete replace pdf with pmf and integral with sum

P(X = x | Y = y) =
P(Y = y | X = x)P(X = x)∑
x′ P(Y = y | X = x ′)P(X = x ′)

.

If X continuous and Y discrete

f (x |Y = y) =
f (x)P(Y = y | x)∫

f (x ′)P(Y = y | x ′) dx ′
.

If X discrete and Y continuous

P(X = x |y) =
P(X = x)f (y | x)∑
x′ P(X = x ′)f (y | x ′)

.
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Bayesian inference

Probability model p(y | θ) depends on a set of parameters θ.

Have data y , assumed to be generated by this probability model.

These two parts are the same as frequentist, likelihood-based

inference.

In frequentist, θ is fixed and p(y | θ) assigns a probability to Y for

each fixed valued of θ
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Bayesian inference

In Bayesian inference, all uncertainty is specified by probability

distributions.

This includes uncertainty about the parameters, θ

So we start with a probability distribution for the parameters p(θ),

called the prior distribution

The prior is a subjective distribution, based on experimenter’s belief,

and is formulated before the data y are seen.
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Bayesian inference

Let y be the observed data (the result of the experiment, e.g., test is

positive)

We then update the prior distribution for θ using y .

This updating is done using Bayes’ theorem.

p(θ | y) =
p(θ) p(y | θ)

p(y)
,

where the observed data enters through the likelihood p(y | θ).

We don’t normally need to find p(y), which is given by

p(y) =

∫
p(θ′) p(y | θ′) dθ′ or

∑
θ′

p(θ′) p(y | θ′)
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What does it mean?

p(θ | y) ∝ p(θ) p(y | θ) (1)

Posterior ∝ prior × likelihood

p(y | θ) is the likelihood and it the probability of data y given the

true θ

Start with initial beliefs/information about θ, p(θ) - this is the prior

distribution formulated before the data are seen.

Bayesian updating: Update the prior distribution using the data y ,

using (1)

The updated prior, p(θ | y) is called the posterior distribution .

We base our inferences about θ based on this posterior distribution.
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Bayesian updating with discrete data, discrete prior

Diagnostic test example

We can redo the diagnostic test example, using discrete pmf of the

data and the parameters (hypotheses).

We need to assign values to events (HIV +ve is 1 and HIV -ve is 0).

Let’s use the following notation

θ is the value of the hypothesis. In this case, θ = 1 means HIV +ve

and θ = 0 means HIV -ve. (θ is a Bernoulli random variable)

p(θ) is the prior pmf of the hypothesis. In this case,

p(θ = 1) = 1/2000 p(θ = 0) = 1999/2000
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Bayesian updating with discrete data, discrete prior

Diagnostic test example

Data: x = 1 means the test is positive.

Likelihood. the probability of the data x = 1, given the true θ (This

is not a pmf). In this case,

p(x = 1|θ = 1) = 0.90 p(x = 1|θ = 0) = 0.05

p(θ = 1|x = 1) and p(θ = 0|x = 1) are the posterior pmf of the θ

given the data x = 1
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Bayesian updating with discrete data, discrete prior

Diagnostic test example

The Bayesian update table with pmf prior and discrete data is

Hypothesis prior likelihood Bayes numerator posterior

θ p(θ) p(x = 1|θ) p(x = 1|θ)p(θ) p(θ|x = 1)

θ = 1 1/2000 0.90 0.00045 p(θ = 1|x = 1) = 0.0089

θ = 0 1999/2000 0.05 0.049975 p(θ = 0|x = 1) = 0.9911

Total 1 NOT SUM TO 1 p(x = 1) = 0.050425 1

Law of total probability: p(x = 1) = p(x = 1|θ = 1)p(θ =

1) + p(x = 1|θ = 0)p(θ = 0) = 0.050425.

Bayes’ theorem: p(θ = 1|x = 1) = p(x=1|θ=1)p(θ=1)
p(x=1) = 0.0089.

Similarly for p(θ = 0|x = 1) = 0.9911.
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Bayesian updating with discrete data, discrete prior

Borard question

Using the notation for discrete pmf p(θ) etc., redo example with

coins and dice.
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