Lecture 2A MTH6102: Bayesian Statistical Methods

Eftychia Solea

Queen Mary University of London

2023

Today's agenda

Today's lecture will cover

- Bayes' theorem
- Use Bayes' theorem in Bayesian inference to compute posterior probabilities with discrete priors

Review of Bayes' theorem

- Bayes' theorem was formulated by Thomas Bayes in the 18th century.
- It's a basic part of probability theory.
- It's also essential for Bayesian statistics.

Bayes' theorem

- Recall that Bayes' theorem allows us to 'invert' conditional probabilities.
- Suppose we have events A and B, with p(B) > 0. Then

$$P(A \mid B) = \frac{P(B \mid A) P(A)}{p(B)}.$$

This is so because

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

and hence

$$P(A \mid B) P(B) = P(A \cap B) = P(B \mid A) P(A)$$
 multiplication rule

Bayes' theorem

- Let Ω be the sample space. Suppose it is partitioned into a set of mutually exclusive and exhaustive events A_1, A_2, \ldots, A_m . (i.e. at least one must occur and no two can occur).
- The event B happens under any of the hypotheses A_i with a known conditional probability $P(B \mid A_i)$.
- Then we can write

$$P(A_i \mid B) = \frac{P(B \mid A_i) P(A_i)}{P(B)}$$
$$= \frac{P(B \mid A_i) P(A_i)}{\sum_{j=1}^{m} P(B \mid A_j) P(A_j)}$$

Why?

Diagnostic test example

Why does it matter?

Suppose HIV has prevalence of 1/2000 in the population. Suppose a test for HIV has 90% sensitivity and 95% specificity.

- So $a = P(\text{test } + \text{ve} \mid \text{HIV } + \text{ve}) = 0.9$, and
- b = P(test -ve | HIV -ve) = 0.95

Suppose a patient is screened and has a positive test. Represent this information with a tree and use Bayes' theorem to compute

- What is the probability that someone who tests positive is HIV positive?
- What is the probability that someone who tests positive is HIV negative?

Diagnostic test example

By Bayes' Theorem

$$P(\mathsf{HIV}\; + \mathsf{ve}\; | \;\; \mathsf{test}\; + \mathsf{ve}) = rac{P(\;\; \mathsf{test}\; + \mathsf{ve}\; | \;\; \mathsf{HIV}\; + \mathsf{ve})P(\mathsf{HIV}\; + \mathsf{ve})}{P(\;\; \mathsf{test}\; + \mathsf{ve})} pprox 1\%$$

much less than the sensitivity of the test, $P(\text{ test } + \text{ve} \mid \text{HIV } + \text{ve})$, but higher than P(HIV + ve) = 1/2000.

• Mixing up P(A|B) with P(B|A) is the Prosecutor's Fallacy; a small probability of evidence given innocence need NOT mean a small probability of innocence given evidence.

Prosecutor's fallacy: Sally Clark

- After the sudden death of two baby sons, Sally Clark (above, center) was sentenced to life in prison in 1999 in the UK.
- Among other errors, expert witness Prof Roy Meadow (above right) had wrongly interpreted the small probability of two cot deaths as a small probability of Clark's innocence.
- After a long campaign, including refutation of Meadow's statistics,
 Clark was released and cleared in 2003
- She was unable to recover from the effects of her conviction. She died in 2007 from alcohol poisoning. See Convicted on Statistics?

Diagnostic test example

- Data: the results of our experiment. In this case, the test is positive
- Hypotheses: The hypotheses are the possible answers to the question being asked. In this case they are: the subject is HIV positive and the subject HIV negative.
- Prior probabilities: The priors are the probabilities of the hypotheses prior to collecting data. In this case, before seeing the test result, the probability that someone is HIV +ve and the probability that someone is HIV negative in the general population

$$P(HIV + ve) = 1/2000, P(HIV - ve) = 1999/2000$$

Diagnostic test example

 Likelihood: The likelihood is the probability of the data assuming that the hypothesis is true. In this case there are two likelihoods, one for each hypothesis

$$P(\text{test} + \text{ve}|\text{HIV} + \text{ve}) = 0.90 \quad P(\text{test} + \text{ve}|\text{HIV} - \text{ve}) = 0.05$$

 Posterior probabilities: The posteriors are the probabilities of the hypotheses given the data. In this case

$$P(HIV + ve|test + ve) = 0.0089$$
 $P(HIV - ve|test + ve) = 0.9911$

Diagnostic test example

By Bayes' theorem

$$P(\mathsf{HIV} + \mathsf{ve}|\mathsf{test} + \mathsf{ve}) = \frac{P(\ \mathsf{test} + \mathsf{ve} \mid \mathsf{HIV} + \mathsf{ve})P(\mathsf{HIV} + \mathsf{ve})}{P(\ \mathsf{test} + \mathsf{ve})}.$$

$$P(\mathsf{HIV} - \mathsf{ve}|\mathsf{test} + \mathsf{ve}) = \frac{P(\ \mathsf{test} + \mathsf{ve} \mid \mathsf{HIV} - \mathsf{ve})P(\mathsf{HIV} - \mathsf{ve})}{P(\ \mathsf{test} + \mathsf{ve})}.$$

$$\mathsf{posterior} = \frac{\mathsf{likelihood} \times \mathsf{prior}}{\mathsf{total} \ \mathsf{prob}, \ \mathsf{of} \ \mathsf{data}}.$$

Diagnostic test example: Calculation using a Bayesian update table

We organise all of these neatly in a Bayesian updating table

Hypothesis	Prior	Likelihood	Bayes numerator	Posterior
HIV +ve	1/2000	0.90	0.00045	0.0089
HIV -ve	1999/2000	0.05	0.049975	0.9911
Total	1	NO SUM TO 1	0.050425	1

- Law of total probability: P(data) = P(test + ve) = sum of Bayesnumerator column = 0.050425
- Bayes theorem:

$$P(\mathsf{HIV} + \mathsf{ve}|\mathsf{test} + \mathsf{ve}) = \frac{P(\mathsf{test} + \mathsf{ve} \mid \mathsf{HIV} + \mathsf{ve})P(\mathsf{HIV} + \mathsf{ve})}{P(\mathsf{test} + \mathsf{ve})}$$
$$= \frac{\mathsf{likelihood} \times \mathsf{prior}}{\mathsf{total} \; \mathsf{prob.} \; \mathsf{of} \; \mathsf{data}}$$

Bayes' theorem

We can express Bayes' theorem

$$P(\text{hypothesis} \mid \text{data}) = \frac{P(\text{data}|\text{hypothesis})P(\text{hypothesis})}{P(\text{data})}$$

With the terminology

$$posterior = \frac{likelihood \times prior}{total\ prob.\ of\ data}.$$

 With the data fixed, the denominator just serves to normalise the posterior to 1. So we can express the Bayes' theorem as

posterior
$$\propto$$
 likelihood \times prior.

 Bayesian updating: The process of going from the prior to the posterior is called Bayesian updating. Bayesian updating uses the data to update our initial beliefs about the hypotheses.

Board Question: Coins

- There are three types of coins which have different probabilities of heads
 - Type A coins are fair, with probability 0.5 of heads.
 - Type B are bent and have probability 0.6 of heads.
 - Type C are bent and have probability 0.9 of heads.

Suppose I have a drawer containing 5 coins: 2 of type A, 2 of type B, and 1 of type C. I pick a coin at random, and without showing you the coin I flip it once and get heads.

- Use Bayes' theorem to compute the probabilities that the coin is type A, type B or type C.
- Identify the data, hypotheses, likelihoods, prior probabilities and posterior probabilities.
- Make a Bayesian update table and compute the posterior probabilities that the chosen coin is each of the three coins.

Board Question: Coins

Food for thought

- Suppose that you didn't know how many coins of each type were in the drawer. You picked one at random and got heads.
- How would you go about deciding which coin type if any was most supported by the data?

Board Question: Dice

- Five dice in the drawer: 4-sided, 6-sided, 8-sided, 12-sided, 20-sided.
- Suppose I picked one at random and, without showing it to you, rolled it and reported a 13.
- Make a Bayesian update table and compute the posterior probabilities that the chosen die is each of the five dice.
- Same question if I rolled a 5.

The Bayes variation

- Sometimes it is more convenient to work with random variables.
- Let X and Y are continuous random variables with joint density f(x,y)

$$f(x \mid y) = \frac{f(y \mid x) f(x)}{f(y)}$$
$$= \frac{f(y \mid x) f(x)}{\int f(y \mid x') f(x') dx'}$$

 The formulae follow from standard results about conditional and marginal pdfs.

The Bayes variation

ullet If X and Y are discrete replace pdf with pmf and integral with sum

$$P(X = x \mid Y = y) = \frac{P(Y = y \mid X = x)P(X = x)}{\sum_{x'} P(Y = y \mid X = x')P(X = x')}.$$

If X continuous and Y discrete

$$f(x|Y=y) = \frac{f(x)P(Y=y\mid x)}{\int f(x')P(Y=y\mid x') dx'}.$$

If X discrete and Y continuous

$$P(X = x | y) = \frac{P(X = x)f(y | x)}{\sum_{x'} P(X = x')f(y | x')}.$$

Bayesian inference

- Probability model $p(y \mid \theta)$ depends on a set of parameters θ .
- Have data y, assumed to be generated by this probability model.
- These two parts are the same as frequentist, likelihood-based inference.
- In frequentist, θ is fixed and $p(y \mid \theta)$ assigns a probability to Y for each fixed valued of θ

Bayesian inference

- In Bayesian inference, all uncertainty is specified by probability distributions.
- ullet This includes uncertainty about the parameters, heta
- So we start with a probability distribution for the parameters $p(\theta)$, called the prior distribution
- The prior is a subjective distribution, based on experimenter's belief, and is formulated before the data y are seen.

Bayesian inference

- Let y be the observed data (the result of the experiment, e.g., test is positive)
- We then update the prior distribution for θ using y.
- This updating is done using Bayes' theorem.

$$p(\theta \mid y) = \frac{p(\theta) p(y \mid \theta)}{p(y)},$$

where the observed data enters through the likelihood $p(y \mid \theta)$.

• We don't normally need to find p(y), which is given by

$$p(y) = \int p(\theta') p(y \mid \theta') d\theta' \text{ or } \sum_{\theta'} p(\theta') p(y \mid \theta')$$

What does it mean?

$$p(\theta \mid y) \propto p(\theta) p(y \mid \theta) \tag{1}$$

Posterior \propto prior \times likelihood

- $p(y \mid \theta)$ is the likelihood and it the probability of data y given the true θ
- Start with initial beliefs/information about θ , $p(\theta)$ this is the prior distribution formulated before the data are seen.
- Bayesian updating: Update the prior distribution using the data y, using (1)
- The updated prior, $p(\theta \mid y)$ is called the posterior distribution .
- ullet We base our inferences about heta based on this posterior distribution.

Diagnostic test example

- We can redo the diagnostic test example, using discrete pmf of the data and the parameters (hypotheses).
- We need to assign values to events (HIV +ve is 1 and HIV -ve is 0).
- Let's use the following notation
- θ is the value of the hypothesis. In this case, $\theta=1$ means HIV +ve and $\theta=0$ means HIV -ve. (θ is a Bernoulli random variable)
- $p(\theta)$ is the prior pmf of the hypothesis. In this case,

$$p(\theta = 1) = 1/2000$$
 $p(\theta = 0) = 1999/2000$

Diagnostic test example

- Data: x = 1 means the test is positive.
- Likelihood. the probability of the data x = 1, given the true θ (This is not a pmf). In this case,

$$p(x = 1|\theta = 1) = 0.90$$
 $p(x = 1|\theta = 0) = 0.05$

• $p(\theta = 1|x = 1)$ and $p(\theta = 0|x = 1)$ are the posterior pmf of the θ given the data x = 1

Diagnostic test example

The Bayesian update table with pmf prior and discrete data is

Hypothesis	prior	likelihood	Bayes numerator	posterior
θ	$p(\theta)$	$p(x=1 \theta)$	$p(x=1 \theta)p(\theta)$	$p(\theta x=1)$
$\theta = 1$	1/2000	0.90	0.00045	$p(\theta = 1 x = 1) = 0.0089$
$\theta = 0$	1999/2000	0.05	0.049975	$p(\theta = 0 x = 1) = 0.9911$
Total	1	NOT SUM TO 1	p(x=1) = 0.050425	1

- Law of total probability: $p(x = 1) = p(x = 1|\theta = 1)p(\theta = 1) + p(x = 1|\theta = 0)p(\theta = 0) = 0.050425$.
- Bayes' theorem: $p(\theta = 1|x = 1) = \frac{p(x=1|\theta=1)p(\theta=1)}{p(x=1)} = 0.0089.$
- Similarly for $p(\theta = 0|x = 1) = 0.9911$.

Borard question

• Using the notation for discrete pmf $p(\theta)$ etc., redo example with coins and dice.