Review
$$3 \cdot 5$$
 some ODE techniques
Method of integrating factors.
ucro solves $u'(x) + f(x) \cdot u(x) = 0$
Multiply both sides by the integrating factor
 $e \int frod x$
The equation becomes
 $e \int frod x$
The equation becomes
 $e \int frod x$. $u(x) + e \int frod x$. $f(x) \cdot u(x) = 0$
Namely
 $E e \int frond x$. $u(x) = 0$
 $e \int frond x$. $u(x) = 0$
 $u(x) = c \cdot e - \int frond x$
 $u(x) = c \cdot e - \int frond x$
 $u(x) = 0$
 $f(x + x, u) = 0$
 $f(x + x, u) = 0$
 $f(x + x, u) = 0$

The integrating factor is

$$e^{Skdx} = e^{\frac{Sk}{2}}$$

multiply both sides by the integrating factor,
get $e^{\frac{Sk}{2}} U_{k} + e^{\frac{Sk}{2}} \cdot x \cdot u = 0$
Namely $E e^{\frac{Sk}{2}} U_{k}^{2} = 0$
Untegrate both sides with respect to x , get
 $e^{\frac{Sk}{2}} U = f(x)$
 $U(x, y) = f(x) e^{-\frac{Sk}{2}}$
Solving constant cofficient DDES.
 $u(x) = solves$
Po $U(x) + P_{1} u'(x) + P_{2} u' = 0$
with Po. R. Ps constant
we consider the corresponding algebraic ophotion

 $\mathcal{U}_{Y_{1}}+\mathcal{U}=\bigcirc$

The corresponding algebraic equation is x2+1 = 0 which has a pair of complex roots $X_1 = i = 0 + 1 \cdot i$ X2=-i~0-1.i we apply the above Gee 2 formula with a=0, b=1, get $V(x, y) = f(x)e^{0 \cdot x}\cos(1 \cdot y) + f(x)e^{0 \cdot x}\sin(1 \cdot y)$ = ficx)Cosy + facx)Siny For any fanotions f1, f2. (Notice here that as solutions to PDE, the constants (1, C2 way depend on X, So we use ficx), facx) functors to denote them)