Review of some ODE techniques

Method of integrating factors.
$u(x)$ solves $\quad u^{\prime}(x)+f(x) \cdot u(x)=0$
multiply both sides by the integrating factor

$$
e^{\int f(x) d x}
$$

The equation becomes

$$
e^{\int f(x) d x} \cdot u^{\prime}(x)+e^{\int f(x) d x} \cdot f(x) \cdot u(x)=0
$$

Nancy

$$
\begin{aligned}
{\left[e^{\int f(x) d x} \cdot u(x)\right]^{\prime} } & =0 \\
e^{\int f(x) d x} \cdot u(x) & =C \\
u(x) & =c \cdot e^{-\int f(x) d x}
\end{aligned}
$$

Example 1: $u(x, y)$ is a solution to the PDE

$$
u_{x}+x \cdot u=0
$$

Find $U(x, y)$.

The integrating factor is

$$
e^{\int x d x}=e^{\frac{x^{2}}{2}}
$$

Multiply both sides ing the integrating factor, get

$$
e^{\frac{x^{2}}{2}} u_{x}+e^{\frac{x^{2}}{2}} \cdot x \cdot u=0
$$

Namely $\left[e^{\frac{x^{2}}{2}} u\right]_{x}=0$
Zuteglote both sides with respect to x, get

$$
\begin{aligned}
& e^{\frac{x^{2}}{2} u}=f(y) \\
& u(x, y)=f(y) e^{-\frac{x^{2}}{2}}
\end{aligned}
$$

Solving constant cofficent ODSS.

$$
\begin{aligned}
& u(x) \text { solves } \\
& P_{0} u(x)+P_{1} u^{\prime}(x)+P_{2} u^{\prime \prime}=0
\end{aligned}
$$

with Po, P, PP P_{2} corotant
we consider the corresponding algebraic equation

$$
P_{0}+P_{1} \cdot x+P_{2} \cdot x^{2}=0 \quad(x) .
$$

There are 2 cores:
care 1: (*) has 2 real roots

$$
x_{1}=a, \quad x_{2}=b
$$

then the several solution is

$$
u(x)=c_{1} e^{a x}+c_{2} e^{b x} \text { for any } c_{1}, c_{2}
$$

Core 2: (f) has a pair of complex roots

$$
\begin{aligned}
& x_{1}=a+i b \\
& x_{2}=a-i b
\end{aligned}
$$

Then the general solution is

$$
u(x)=c_{1} e^{a x} \cos (b x)+c_{2} e^{a x} \sin (b x)
$$

for any c_{1}, c_{2}.
Example 2. Find the general solution $U(x, y)$ for the PDE

$$
u_{y y}+u=0
$$

The corresponding algebraic equation is

$$
x^{2}+1=0
$$

which has a pair of complex bots

$$
\begin{aligned}
& x_{1}=i=0+1 \cdot i \\
& x_{2}=-i=0-1 \cdot i
\end{aligned}
$$

we apply the above case 2 formula with

$$
\begin{aligned}
& a=0, b=1, g e t \\
& U(x, y)=f_{1}(x) e^{0 \cdot x} \cos (1 \cdot y)+f_{2}(x) e^{0 \cdot x} \sin (1 \cdot y) \\
&=f_{1}(x) \cos y+f_{2}(x) \sin y
\end{aligned}
$$

For any functions f_{1}, f_{2}.
(Notice here that as solutions to PDE, the constants C_{1}, C_{2} may deperal on X, So we use $f_{1}(x), f_{2}(x)$ functor to denote them).

