
Random Processes – 2023/24 Solutions 6

1.

(a) The chain is irreducible so (by Theorem 4.8) it has a unique equilibrium dis-
tribution.

However it does not have a limiting distribution essentially because there is
some periodic behaviour; we alternate between state 1 and the set of states
{2, 3}. So

P(Xt = 1 | X0 = 1) = 0 whenever r is odd

P(Xt = 2 | X0 = 1) = 0 whenever r is even

P(Xt = 3 | X0 = 1) = 0 whenever r is even

So there is no way P t can tend to a limit of the correct form as t → ∞.

(b) � If we start in state 1 we are certain to return in exactly 2 steps. So
P(R1 = 2) = 1 and E(R1) = 2.

� If we start in state 2 then we may return at any even number of steps and

P(R2 = 2k) = p2,1 (p1,3p3,1)
k−1 p1,2 =

(
4

5

)k−1
1

5
.

So 1
2
R2 has a geometric distribution with parameter 1/5 and E(R2) = 10.

� Similarly, if we start in state 3 then we may return at any even number
of steps and

P(R3 = 2k) = p3,1 (p1,2p2,1)
k−1 p1,3 =

(
1

5

)k−1
4

5
.

So 1
2
R3 has a geometric distribution with parameter 4/5 and E(R2) = 5/2.

(c) We saw in lectures (Theorem 5.3) that the equilibrium distribution is given by
wk =

1
E(Rk)

so it is
(
1/2 1/10 2/5

)
.

(d) Finding the equilibrium distribution by solving wP = w gives equations:

w1 = w2 + w3

w2 =
1
5
w1

w3 =
4
5
w1
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So w =
(
w1

1
5
w1

4
5
w1

)
and because w is a probability vector we must have

2w1 = 1. This give the same answer.

I hope this question helped see the connection between the equilibrium distribution
and the expected first return times. However, finding the equilibrium distribution
is typically easier to do directly (as in part (d)) rather than by the method in parts
(b-c). So we usually use Theorem 5.3 in the opposite direction (that is finding E(Rs)
from the equilibrium distribution rather than vice versa).

2. Even though the question didn’t ask you to draw the transition graph it’s a good
idea to do this to help visualise the chain. Do this now if you haven’t already done
so.

(a) By considering the transition graph we see that

f
(t)
0 = p0,1p1,2p2,3 . . . pt−2,t−1pt−1,0 =

(
1

2

)(
2

3

)(
3

4

)
. . .

(
t− 1

t

)(
1

t+ 1

)
=

1

t(t+ 1)
.

(Strictly speaking we should check the t = 1 case since we implicitly assumed

that t ⩾ 2 in the above calculation. Happily f
(1)
0 = p0,0 = 1/2 so the same

formula works. Well done if you spotted this subtlety.)

Now

f0 =
∞∑
t=1

f
(t)
0 =

∞∑
t=1

1

t(t+ 1)

We need to decide whether this infinite sum is equal to 1. Now

n∑
t=1

1

t(t+ 1)
=

n∑
t=1

(
1

t
− 1

t+ 1

)
=

(
1− 1

2

)
+

(
1

2
− 1

3

)
+· · ·+

(
1

n
− 1

n+ 1

)
= 1− 1

n+ 1

which tends to 1 as n → ∞. So f0 =
∑∞

t=1
1

t(t+1)
= 1. So state 0 is recurrent

by definition.

(b) Using the expression for f
(t)
0 above

E(R0) =
∞∑
t=1

tf
(t)
0 =

∞∑
t=1

1

t+ 1
= ∞

and so the chain is null recurrent.

2



Random Processes Solutions 6

(c) The chain is irreducible (that is every state is in the same communicating class)
and null recurrence is a class property. This means that every state shows the
same behaviour. Since state 0 is null recurrent, state 1000 is also null recurrent.

(d) The transition graph for this process has the same shape as that for the suc-
cess runs chain. Only the numerical values of the positive probabililties have
changed, You could think of this process as being like the success runs chain
except that the longer the current run of successes is the more likely it is to be
extended. For instance a football team may be more confident during a long
run of wins and hence more likely to win the next game.

3.

(a) If w =
(
w0 w1 w2 . . .

)
is an equilibrium distribution then it satisfies wk =∑∞

i=0wipi,k (this is exactly the infinite analogue of the equation we get from
wP = w). So in this case:

w0 =
2
3
w1

w1 = w0 +
2
3
w2

w2 =
1
3
w1 +

2
3
w3

...

and in general wk =
1
3
wk−1 +

2
3
wk+1 for k ⩾ 2.

Solving the first few of these we get:

w1 =
3
2
w0

w2 =
3
2
w1 − 3

2
w0 =

3
4
w0

w3 =
3
2
w2 − 1

2
w1 =

3
8
w0

This suggests a guess that the solution is wk =
3
2k
w0 for all k ⩾ 1. Let’s prove

this by (strong) induction. We already checked it for k = 1, 2 (the base cases).
Suppose that k ⩾ 2 and that wk =

3
2k
w0 and wk−1 =

3
2k−1w0. We have

wk+1 =
3
2
wk − 1

2
wk−1

= 3
2

3
2k
w0 − 1

2
3

2k−1w0 (by the induction hypothesis)

=
(

9
2k+1 − 3

2k

)
w0

= 3
2k+1w0

as required.
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Finally, for an equilibrium distribution we need
∑∞

i=0wi = 1 so

1 = w0 + w1 + w2 + . . . = w0 + w0

∞∑
i=1

3

2k
= 4w0

so the equilibrium distribution is

w0 =
1

4

wk =
3

2k+2
for k ⩾ 1

(b) The chain has a unique equilibrium distribution so by Theorem 5.3 it is positive
recurrent.

(c) This is asking for E(R0). By Theorem 5.3 this is 1
w0

so E(R0) = 4.

4.

(a) The transition graph can look a bit of a mess. Drawing it systematically and
thinking about how you arrange the states and arrows on the page helps a bit.

−3 −2 −1 0 1 2 3 4

2/3 2/3 2/3 2/3

1/3 1/3 1/3
1

1/3 1/2 1/3 1/2 1/3

1/3 1/3

1/3 1/3

1/2

1/2

(b) From the graph the communicating classes are:

{0}, {−1,−2,−3, . . .}, {1, 2}, {3, 4}, . . . , {2k − 1, 2k}, . . .

(c) � State 0 is absorbing so {0} is positive recurrent.

� State 1 is transient because if we go from 1 to 0 (which happens with
probability 1/3 then we never return). So the states in {1, 2} are transient.
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� Similarly state 2k − 1 is transient because if we go from 2k − 1 to 2k − 2
(which happens with probability 1/3) then we never return. So states in
{2k − 1, 2k} are transient.

� All that’s left are the negative integer states. These are also transient.
From state −1 we could go to state 0 with probability 2/3 and from there
we can never return. So state −1 is transient. So every state in this
communicating class (that is all the negative integer states) is transient.

5.

(a) If i and j are in the same communicating class then there exist r, s > 0 with

p
(r)
ij > 0 and p

(s)
ji > 0. Suppose that i is 2-periodic, then since

p
(r+s)
ii ⩾ p

(r)
ij p

(s)
ji > 0

we have that r + s must be even.

We want to prove that j is 2-periodic.

Suppose, for a contradition, that it is not. So there exists an odd number t
such that p

(t)
jj > 0. Hence,

p
(r+t+s)
ii ⩾ p

(r)
ij p

(t)
jj p

(s)
ji > 0.

Since t is odd and r+s is even r+t+s is odd. This contradicts the 2-periodicity
of i. We conclude that j is 2-periodic.

(b) Yes. A simple (and completely deterministic) example would be the chain with
S = {1, 2, 3} and transition matrix1 0 0

0 0 1
0 1 0


(c) This is not possible. If a state has a loop then it is not 2-periodic (because

p
(1)
ss > 0). We showed in part (a) that 2-periodicity is a class property so an
irreducible chain cannot contain both a 2-periodic state and a state which is
not 2-periodic.

Please let me know if you have any comments or corrections
Robert Johnson

r.johnson@qmul.ac.uk
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