
Random Processes – 2023/24 Solutions 5

1.

(a) There is no way to get from state 2 to state 1 so p
(t)
2,1 = 0 for all t ⩾ 0. Hence

the chain is not irreducible so it is certainly not regular.

(b) Suppose we start in state 1. We will eventually leave state 1 and then we
will never return. So eventually, the chain will behave exactly as a chain with
S = {2, 3, 4, 5} and transition matrix:

0 1/4 1/4 1/2
1/2 0 1/4 1/4
1/4 1/2 0 1/4
1/4 1/4 1/2 0


This chain is regular so it has a limiting distribution

(
w2 w3 w4 w5

)
. Now

by our earlier comparison, the original chain has a limiting distribution and it
is given by

(
0 w2 w3 w4 w5

)
.

(c) Theorem 4.7 says that if a chain is regular then it has a limiting distribution.
The existence of a chain which is not regular but does have a limiting distri-
bution (such as this example) does not violate this Theorem. It just says that
the converse implication does not hold.

(d) The limiting distribution is also the unique equilibrium distribution so to find
it we solve

w2 =
1
2
w3 +

1
4
w4 +

1
4
w5

w3 =
1
4
w2 +

1
2
w4 +

1
4
w5

w4 =
1
4
w2 +

1
4
w3 +

1
2
w5

w5 =
1
2
w2 +

1
4
w3 +

1
4
w4

Solving these1 we get that the limiting distribution is
(
0 1

4
1
4

1
4

1
4

)
. So (by

Theorem 4.9) the expcetation of the proportion of time spent in state 5 tends
to 1

4
.

1If you spotted a quick way to solve these then well done. If you didn’t can you see it now?
Hint: Sheet 3, Question 3(d).
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2. Looking at the matrix, some communicating classes should be obvious. After that
a good way to spot the communicating classes is to draw the transition graph. We
went through some of the thought processes for doing this in the Week 6 seminar.
You get that:

� State 7 is absorbing so {7} is a communicating class;

� There is no way to leave the set of states {8, 9} so this set is a communicating
class;

� From states {3, 4} the only paths out lead to state 7 or state 9 and we can
never retirn from these so this set is a communicating class;

� It is possible to move freely among the states {1, 2, 5, 6} (for instance by fol-
lowing the cycle 1 → 6 → 2 → 5 → 1) so this is a communicating class.

So the communicating classes are:

{1, 2, 5, 6}, {3, 4}, {7}, {8, 9}.

Now we need to classify them as recurrent or transient:

� State 7 is certainly recurrent since it is absorbing.

� States 8 and 9 are also recurrent since once we reach this class we can never
leave it and so we must return (for instance the probability that we do not

return to 8 within t steps or less is 6
7

(
1
4

)t−1
which tends to 0).

� Every other state is transient. To see this we just need to show that the
probability of never returning is positive. For state 1 the probability of going
straight to state 7 is 1/2 and so the probability of never returning to 1 is at
least 1/2 (so is certainly positive). Similarly,

P(never return to 2) ⩾ p2,8 > 0

P(never return to 3) ⩾ p3,7 > 0

P(never return to 4) ⩾ p4,9 > 0

P(never return to 5) ⩾ p5,1p1,7 > 0

P(never return to 6) ⩾ p6,2p2,8 > 0

You might have given a different argument which involves only having to check
probabilities like this for two of the transient states rather than all of them. If
you didn’t do this can you see that argument now?
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3.

(a) Clearly f
(1)
1 = 1/2. From the transition diagram (or the matrix) we can see

that to start at 1 and return there in more than one step we must go first to
state 2, then go around the loop 2, 3, 4, 2 some number of times (possibly 0),
and finally return to 1. It follows that

� If t > 1 is not of the form 3r + 2 for some integer r ⩾ 0 then f
(t)
1 = 0.

� If t = 3r + 2 for some integer r ⩾ 0 then

f
(t)
1 = p12 (p2,3p3,4p4,2)

r p2,1 =
1

8

(
2

5

) t−2
3

.

So

f
(t)
1 =


1
2

if t = 1
1
8

(
2
5

) t−2
3 if t = 3r + 2 for some r ∈ N

0 otherwise.

.

To find f1 we have essentially a geometric progression (with a extra term at
the start)

f1 =
1

2
+

1

8
+

1

8

(
2

5

)
+

1

8

(
2

5

)2

+ · · · = 1

2
+

5

24
=

17

24
.

(b) State 1 is transient because f1 < 1.

(c) If you only wanted to establish that state 1 is transient, the exact value of f1
as calculated in part (a) is not needed. It is enough to note that

P(never return to 1) ⩾ p1,2p2,3p3,5 =
1
2
3
4
1
5
= 3

40

so f1 ⩽ 37
40

< 1.

(d) If state 2 were modified in this way then there would be more possible paths

giving a first return to 1 at time t. To calculate f
(t)
1 we would have to work

out all such paths and sum over them which would be fiddly.

(e) The method of first step analysis can be used to do this. Suppose that after
the first step we make state 1 into an absorbing state then the probability of
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return f1 in the original Markov chain is the probability that in this new chain
we are absorbed at 1. This can be calculated by first step analysis.

More explicitly if we define ai = P(Xt = 1 for some t > 0 | X0 = i) for i ̸= 1
then the ai satisfy ai = pi1 +

∑
s∈S\{1} pisas (with a5 = 0 of course). These

equations allow us to calculate the ai. Finally, we have (again by conditioning
on the first step) that f1 =

1
2
+ 1

2
a2. Try it and check you get the same answer

as in part (a).

4. The thing we are trying to prove relates the first return probabilities f
(t)
i and

the t-step transition probabilities p
(t)
ii . Let’s think how we could make an expression

which includes both of these. One idea would be to calculate p
(t)
ii by conditioning on

the time of first return:

p
(t)
ii =

t∑
k=1

P(Xt = i | first return to i is at time k)P(first return to i is at time k)

=
t∑

k=1

P(Xt = i | Xk = i,Xk+1 ̸= i, . . . , X1 ̸= i,X0 = i)P(Xk = i,Xk+1 ̸= i, . . . , X1 ̸= i | X0 = i)

=
t∑

k=1

P(Xt = i | Xk = i)f
(k)
i

(by the Markov property and the definition of f
(k)
i )

=
t∑

k=1

p
(t−k)
ii f

(k)
i

= p
(0)
ii f

(t)
i +

t−1∑
k=1

p
(t−k)
ii f

(k)
i (splitting off the k = t term)

= f
(t)
i +

t−1∑
k=1

p
(t−k)
ii f

(k)
i (since p

(0)
ii = 1)

Rearranging this gives us the expression we wanted.

Please let me know if you have any comments or corrections

Robert Johnson
r.johnson@qmul.ac.uk
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