Random Processes - 2023/24

The questions on this sheet are based on the material from from Week 5 lectures. Question 1 is a fairly standard example on equilibrium and limiting distribution but with a small twist. Question 2 is about communicating classes and the general idea of recurrent and transient states. Questions 3 and 4 are about first-return probabilities.

1. Let $\left(X_{0}, X_{1}, \ldots\right)$ be the Markov chain with state space $S=\{1,2,3,4,5\}$ and transition matrix:

$$
\left(\begin{array}{ccccc}
99 / 100 & 1 / 100 & 0 & 0 & 0 \\
0 & 0 & 1 / 4 & 1 / 4 & 1 / 2 \\
0 & 1 / 2 & 0 & 1 / 4 & 1 / 4 \\
0 & 1 / 4 & 1 / 2 & 0 & 1 / 4 \\
0 & 1 / 4 & 1 / 4 & 1 / 2 & 0
\end{array}\right)
$$

(a) Is this chain regular?
(b) Does it have a limiting distribution?
(c) Explain why your answers to parts (a) and (b) do not violate Theorem 4.7.
(d) What can you say about the proportion of time spent in state 5 in the long run?
2. Consider the Markov chain on state space $\{1,2,3,4,5,6,7,8,9\}$ with transition matrix

$$
P=\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 1 / 2 & 1 / 2 & 0 & 0 \\
0 & 2 / 3 & 0 & 0 & 1 / 6 & 0 & 0 & 1 / 6 & 0 \\
0 & 0 & 1 / 4 & 1 / 4 & 0 & 0 & 1 / 2 & 0 & 0 \\
0 & 0 & 9 / 10 & 0 & 0 & 0 & 0 & 0 & 1 / 10 \\
1 / 2 & 1 / 3 & 1 / 6 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 / 2 & 0 & 0 & 0 & 1 / 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 / 7 & 6 / 7 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 / 4 & 1 / 4
\end{array}\right) .
$$

Find the communicating classes of states of the chain. For each state say whether it is recurrent or transient, giving a brief explanation of why (you do not need to calculate the first return probabilities exactly to do this).
3. Consider the Markov chain on state space $\{1,2,3,4,5\}$ with transition matrix

$$
P=\left(\begin{array}{ccccc}
1 / 2 & 1 / 2 & 0 & 0 & 0 \\
1 / 4 & 0 & 3 / 4 & 0 & 0 \\
0 & 0 & 0 & 4 / 5 & 1 / 5 \\
0 & 2 / 3 & 0 & 0 & 1 / 3 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

(a) Calculate the first return probability $f_{1}^{(t)}$ and the return probability f_{1}.
(b) Is state 1 recurrent or transient?
(c) Did you need your solution to part (a) to answer part (b)?
(d) Why would it become harder to calculate $f_{1}^{(t)}$ if state 2 was modified so that p_{21}, p_{22}, p_{23} were all positive?
(e) How could you calculate f_{1} without working out the $f_{1}^{(t)}$?
4. Prove that for any Markov chain, any $i \in S$ and any $t \geqslant 1$ we have

$$
f_{i}^{(t)}=p_{i i}^{(t)}-\sum_{k=1}^{t-1} p_{i i}^{(t-k)} f_{i}^{(k)}
$$

[Hint: Work out $p_{i i}^{(t)}$ by conditioning on the time of the first return to i.]
5. [Challenge Question]
(a) Prove that \leftrightarrow (intercommunicates) is an equivalence relation on S.
(b) Show that every Markov chain on a finite S has at least one communicating class which is recurrent. Is the same result true when S is infinite?

Some recent exam questions on the material in Week 5 include:

- Main Exam Period 2018. Question 5 (a,b) (The notation $f_{i, i}$ is used instead of f_{i} for the return probability here.)
- January 2022 Exam. Question 2 (b,c,d)
- January 2023 Exam. Question 1 (e,f)

