The questions on this sheet are based on the material from from Week 5 lectures. Question 1 is a fairly standard example on equilibrium and limiting distribution but with a small twist. Question 2 is about communicating classes and the general idea of recurrent and transient states. Questions 3 and 4 are about first-return probabilities.

1. Let (X_0, X_1, \ldots) be the Markov chain with state space $S = \{1, 2, 3, 4, 5\}$ and transition matrix:

/99	/100	1/100	0	0	0 \
	0	0	1/4	1/4	1/2
	0	1/2	0	1/4	1/4
	0	1/4	1/2	0	1/4
	0	1/4	1/4	1/2	0 /

- (a) Is this chain regular?
- (b) Does it have a limiting distribution?
- (c) Explain why your answers to parts (a) and (b) do not violate Theorem 4.7.
- (d) What can you say about the proportion of time spent in state 5 in the long run?

2. Consider the Markov chain on state space $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ with transition matrix

	(0	0	0	0	0	1/2	1/2	0	$0 \rangle$
	0	2/3	0	0	1/6	0	0	1/6	0
	0	0	1/4	1/4	0	0	1/2	0	0
	0	0	9/10	0	0	0	0	0	1/10
P =	1/2	1/3	1/6	0	0	0	0	0	0
	0	1/2	0	0	0	1/2	0	0	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	1/7	6/7
	0	0	0	0	0	0	0	3/4	1/4

Find the communicating classes of states of the chain. For each state say whether it is recurrent or transient, giving a brief explanation of why (you do not need to calculate the first return probabilities exactly to do this). 3. Consider the Markov chain on state space $\{1, 2, 3, 4, 5\}$ with transition matrix

$$P = \begin{pmatrix} 1/2 & 1/2 & 0 & 0 & 0\\ 1/4 & 0 & 3/4 & 0 & 0\\ 0 & 0 & 0 & 4/5 & 1/5\\ 0 & 2/3 & 0 & 0 & 1/3\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

- (a) Calculate the first return probability $f_1^{(t)}$ and the return probability f_1 .
- (b) Is state 1 recurrent or transient?
- (c) Did you need your solution to part (a) to answer part (b)?
- (d) Why would it become harder to calculate $f_1^{(t)}$ if state 2 was modified so that p_{21}, p_{22}, p_{23} were all positive?
- (e) How could you calculate f_1 without working out the $f_1^{(t)}$?
- 4. Prove that for any Markov chain, any $i \in S$ and any $t \ge 1$ we have

$$f_i^{(t)} = p_{ii}^{(t)} - \sum_{k=1}^{t-1} p_{ii}^{(t-k)} f_i^{(k)}.$$

[Hint: Work out $p_{ii}^{(t)}$ by conditioning on the time of the first return to i.]

- 5. [Challenge Question]
 - (a) Prove that \leftrightarrow (intercommunicates) is an equivalence relation on S.
 - (b) Show that every Markov chain on a finite S has at least one communicating class which is recurrent. Is the same result true when S is infinite?

Some recent exam questions on the material in Week 5 include:

- Main Exam Period 2018. Question 5 (a,b) (The notation $f_{i,i}$ is used instead of f_i for the return probability here.)
- January 2022 Exam. Question 2 (b,c,d)
- January 2023 Exam. Question 1 (e,f)

Robert Johnson r.johnson@qmul.ac.uk