
Random Processes – 2023/24 Solutions 4

1.

(a) From the transition graph this is clearly irreducible. Again looking at the
transition graph (or powers of the matrix) it is possible to get between any two
states in 3 steps. So the chain is regular.

Since it is regular it has a limiting distribution (by Theorem 4.7) and that
limiting distribution is the unique limiting distribution (by Theorem 4.6).

In Problem Sheet 3 we found this equilibrium distribution was(
w1 w2 w3 w4

)
=

(
24/73 18/73 16/73 15/73

)
and so this is the limiting distribution.

(b) This chain is not irreducible (there is no way of getting from state 2 to state
1). Since it is not irreducible it is certainly not regular.

So Theorem 4.7 tells us nothing and we need to think.

States 2 and 3 are both absorbing so:

p
(r)
2,2 = P(Xr = 2 | X0 = 2) = 1

p
(r)
3,2 = P(Xr = 2 | X0 = 3) = 0

So P r cannot tend to a limit with all rows equal (equivalently P(Xr = 2) does
not tend to a limit which does not depend on X0). So there is no limiting
distribution.

(c) This chain is not irreducible (there is no way of getting from state 3 to state
1). Since it is not irreducible it is certainly not regular.

Again Theorem 4.7 tells us nothing and we need to think.

The only way we can fail to reach state 3 is for us to loop at state 1. The
probability that this happens up to time r is

(
2
5

)r → 0 as r → ∞. So we are
absorbed at 3 with probability 1. So there is a limiting distribution and it is(

w1 w2 w3

)
=

(
0 0 1

)
Equivalently we have

P r →

0 0 1
0 0 1
0 0 1

 as r → ∞.
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(d) This chain is regular since P has no 0 entries. So it is certainly irreducible. So
(by Theorem 4.7) it has a limiting distribution. We checked in Problem Sheet
3 that the vector w =

(
1/4 1/4 1/4 1/4

)
is an equilibrium distribution. By

Theorem 4.6 this is also the limiting distribution.

(e) Again, this chain is regular since P has no 0 entries. So it is certainly irre-
ducible.

We don’t need any theory to see it has a limiting distribution. The structure of
the matrix means that P r = P for all r. Hence P r → P as r → ∞. The matrix
P has all rows equal to

(
a b c d

)
and so this is the limiting distribution.

2.

(a) If p = 1 then state 1 is an absorbing state so the chain is not irreducible (for

instance p
(r)
1,2 = 0 for all r).

If p ̸= 1 then the chain is irreducible. This is fairly easy to see from the
transition graph. If you have trouble seeing this notice that there is a cycle
starting in state 1 and following arrows corresponding to transitions: 1 → 5 →
3 → 2 → 5 → 4 → 1. Starting from any state we can follow this cycle to get
to any other state.

(b) If p = 1 then it is certainly not regular because being regular is a stronger
condition than irreducible. If 0 < p < 1 then it is regular by Question 3(a):
the chain is irreducible and has a loop at state 1. That leaves p = 0 as the
tricky case

If p = 0 then you can see from the transition graph that there the chain has a
cyclic structure.

� From states 1 and 2 we must move to state 5.

� From state 5 we must move to state 3 or 4.

� From states 3 and 4 we must move to state 1 or 2.

From this you can see that the chain is not regular. For instance: if r is a
multiple of 3 then p

(r)
1,5 = 0 while if r is not a multiple of 3 then p

(r)
1,1 = 0. So

there is no r for which p
(r)
i,j ̸= 0 for all i, j ∈ {1, 2, 3, 4, 5}.

(c) Since the chain is regular it has a limiting distribution w (by Theorem 4.7).
Moreover (by Theorem 4.6) w is the unique solution to wP = w. We therefore
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solve

(
w1 w2 w3 w4 w5

)

1/2 0 0 0 1/2
0 0 0 0 1
1/4 3/4 0 0 0
3/4 1/4 0 0 0
0 0 1/2 1/2 0

 =
(
w1 w2 w3 w4 w5

)

That is

w1 =
1
2
w1 +

1
4
w3 +

3
4
w4

w2 =
3
4
w3 +

1
4
w4

w3 =
1
2
w5

w4 =
1
2
w5

w5 =
1
2
w1 + w2

The third and fourth equations give that w3 = w4 = 1
2
w5. So the first two

equations become:

w1 =
1
2
w1 + w3 so w1 = 2w3

w2 = w3

Finally the last equation gives

w5 = 2w3

Putting this all together we get that

w =
(
2w3 w3 w3 w3 2w3

)
Since w is a probability vector we have 7w3 = 1 so w3 =

1
7
and

w =
(
2
7

1
7

1
7

1
7

2
7

)
It is a good idea after a calculation like this to check by doing the matrix
multiplication wP and making sure that you do get w.

(d) After the robot has been running for a long time, the chance that it will be
in each region will be very close to the numbers in part (c). For instance the
chance that it is in region 1 at a particular large time will be very close to 2

7

regardless of where it started.
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3.

(a) Since the chain is irreducible we know that for any a, b ∈ S there is an r with

p
(r)
ab > 0. Let m be the maximum of all of these rs (we can do this since there
are only finitely many pairs of states). We will show that for any two states

a, b we have p
(2m)
ab > 0.

It follows from the definition of m that given any pair of states a, b ∈ S we
have that p

(s)
ai > 0 for some s ⩽ m and p

(t)
ib > 0 for some t ⩽ m. So there is a

path from a to b via i of length s + t ⩽ 2m steps. Since pii > 0 we can add
loops at state i to make this into a path from a to b with 2m steps. So the
chain is regular (setting r = 2m in the definition will work).

To see this a bit more formally,

p
(2m)
ab ⩾ p

(s)
ai p

(2m−s−t)
ii p

(t)
ib > 0

because 2m− s− t ⩾ 0 and p
(2m−s−t)
ii ⩾ p2m−s−t

ii .

(b) The result is no longer true for infinite S. Consider the Markov chain with
S = Z and

pi,i = pi,i+1 = pi,i−1 = 1/3 for all i ∈ Z,
and all other transition probabilities 0. This is irreducible but given any r we
have that p

(r)
0,r+1 = 0 (we cannot get from state 0 to state r+1 in only r steps).

and so it is not regular. (The part of the proof above which fails here is that
we cannot necessarily take the maximum of an infinite set of numbers).

4.

(a) We know that the total number of balls is always n. So we can describe the
state of the system by saying how many balls are in the first bucket. This gives
n+1 states where state k means ‘there are k balls in the first bucket and n−k
balls in the second bucket’.

The transitions involve moving a ball from one bucket to another so the state
number only changes by 1. We have

pi,i−1 = P(Xt+1 = i− 1 | Xt = i) = P(ball chosen from first bucket) =
i

n
(for all 1 ⩽ i ⩽ n)

pi,i+1 = P(Xt+1 = i+ 1 | Xt = i) = P(ball chosen from second bucket) =
n− i

n
(for all 0 ⩽ i ⩽ n− 1)
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(b) When n = 4 the transition graph is

0 1 2 3 4

1 3/4 1/2 1/4

13/41/21/4

and the transition matrix is

P =


0 1 0 0 0
1/4 0 3/4 0 0
0 1/2 0 1/2 0
0 0 3/4 0 1/4
0 0 0 1 0

 .

(c) The chain is irreducible (we can get from any state to any other state) However,
every step involves moving from an odd state to an even state. This means
that the powers of P must have the following shape:

P r =


0 ? 0 ? 0
? 0 ? 0 ?
0 ? 0 ? 0
? 0 ? 0 ?
0 ? 0 ? 0

 when r is odd, P r =


? 0 ? 0 ?
0 ? 0 ? 0
? 0 ? 0 ?
0 ? 0 ? 0
? 0 ? 0 ?

 when r is even.

From this we can see that the chain is not regular (there are 0 entries in P r

for every r). We can also see that there is no limiting distribution because the
only way such a sequence could tend to a limit would be if the limit was the
all 0 matrix and the rows of this are not probability vectors (in fact P r does
not tend to a limit).

(d) The chain is irreducible so by Theorem 4.8 it has a unique equilibrium distri-
bution.

(e) To find the equilibrium distribution when n = 4 we solve wP = w. That is

(
w0 w1 w2 w3 w4

)


0 1 0 0 0
1/4 0 3/4 0 0
0 1/2 0 1/2 0
0 0 3/4 0 1/4
0 0 0 1 0

 =
(
w0 w1 w2 w3 w4

)
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subject to w0 + w1 + w2 + w3 + w4 = 1. You get (I leave the details to you):

w =
(
1/16 1/4 3/8 1/4 1/16

)
(f) Suppose we put the ball back in a random bucket rather than moving it. We

have a 1/2 chance of putting it back in the same bucket (in which case the
state doesn’t change) and a 1/2 chance of moving it (in which case we make
the same move as in the original chain). So in the transition graph we add
a loop labelled 1/2 at each state and scale all other probabilities by 1/2. For
instance when n = 4 we get

0 1 2 3 4

1/2 3/8 1/4 1/8

1/23/81/41/8

1/2

1/2 1/2 1/2

1/2

Equivalently, the transition matrix for the new chain is 1
2
P + 1

2
In (where In is

the n× n identity matrix).

The chain is now regular (see Question 3a for instance) so it has a limiting
distribution which is also the unique limiting distribution. This equilibrium
distribution will be the same as the equilibrium distribution for the original
chain (because wP = w if and only if w

(
1
2
P + 1

2
In
)
= w).

Please let me know if you have any comments or corrections

Robert Johnson
r.johnson@qmul.ac.uk
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