

Complex Networks (MTH6142) Solutions of Formative Assignment 5

• 1. Random networks in the $\mathbb{G}(N, p)$ ensemble

Assume that $p = a/N^z$, where a > 0 and $z \ge 0$, and a, z independent of N.

- (a) Determine the average degree $\langle k\rangle$ in the limit $N\to\infty$ for the following values of the parameters
 - (i) a = 0.5, z = 1;
 - (ii) a = 2, z = 1;
 - (iii) a > 0, z = 2;
 - (iv) a > 0, z = 0.5.
- (b) In which of the above cases does the random network contain a giant component in the limit $N \to \infty$?.
- (c) Given $p = a/N^z$ with generic values of $a > 0, z \ge 0$ determine the average degree $\langle k \rangle$ in the large network limit $N \to \infty$.
- (d) Determine the conditions on a and z for these random networks to be subcritical, i.e. with a fraction S of nodes in the giant component given by S = 0 in the $N \to \infty$ limit.
- (e) Determine the conditions on a and z for these random networks to be supercritical, i.e. with a non vanishing fraction S of nodes in the giant component (S > 0) in the $N \to \infty$ limit.
- (f) Determine the conditions on a and z for which these random networks are critical, in the large network limit, i.e. in the limit $N \to \infty$.
- Notes on the solution

(a)& (b) The average degree $\langle k \rangle$ is given by

$$\langle k \rangle = p(N-1) = \frac{a}{N^z}(N-1). \tag{1}$$

For the following parameter values we have

(i)
$$a = 0.5, z = 1;$$

$$\lim_{N \to \infty} \langle k \rangle = \lim_{N \to \infty} \frac{0.5}{N} (N-1) = 0.5.$$
 (2)

The network does not contain a giant component.

(ii) a = 2, z = 1;

$$\lim_{N \to \infty} \langle k \rangle = \lim_{N \to \infty} \frac{2}{N} (N - 1) = 2.$$
(3)

The network contains a giant component.

(iii) a > 0, z = 2;

$$\lim_{N \to \infty} \langle k \rangle = \lim_{N \to \infty} \frac{a}{N^2} (N - 1) = 0.$$
(4)

The network does not contain a giant component.

(iv) a > 0, z = 0.5.

$$\lim_{N \to \infty} \langle k \rangle = \lim_{N \to \infty} \frac{a}{N^{1/2}} (N - 1) = \infty.$$
 (5)

The network contains a giant component.

(c) The average degree of a network in the $\mathbb{G}(N, p)$ ensemble is given by $\langle k \rangle = p(N-1)$. By inserting in this expression the value of p given by $p = a/N^z$, we get

$$\langle k \rangle = p(N-1) = \frac{a}{N^z}(N-1) \simeq \frac{a}{N^{z-1}} \tag{6}$$

where the last expression is valid for $N \gg 1$. The limit for $N \to \infty$ this gives

$$\lim_{N \to \infty} \langle k \rangle = \begin{cases} 0 & \text{if } z > 1 \\ a & \text{if } z = 1, \\ \infty & \text{if } z < 1. \end{cases}$$
(7)

(d) A random network is subcritical if $\langle k \rangle < 1$. Therefore the condition for a random network with $p = a/N^z$ to be subcritical in the limit $N \to \infty$ is given by

$$\langle k \rangle = \lim_{N \to \infty} \frac{a}{N^z} (N - 1) = \lim_{N \to \infty} \frac{a}{N^{z-1}} < 1.$$
(8)

Therefore one of the two following conditions (I) or (II) must be met

(I)
$$z > 1$$

(II) $z = 1$ and $a < 1$.

(e) A random network is supercritical if $\langle k \rangle > 1$. Therefore the condition for a random network with $p = a/N^z$ to be supercritical in the limit $N \to \infty$ is given by

$$\langle k \rangle = \lim_{N \to \infty} \frac{a}{N^z} (N-1) = \lim_{N \to \infty} \frac{a}{N^{z-1}} > 1.$$
(9)

Therefore one of the two following conditions $(I\!I\!I)$ or (IV) must be met

(f) A random network is critical if $\langle k \rangle = 1$. Therefore the condition for a random network with $p = a/N^z$ to be critical in the limit $N \to \infty$ is given by

$$\langle k \rangle = \lim_{N \to \infty} \frac{a}{N^z} (N-1) = \lim_{N \to \infty} \frac{a}{N^{z-1}} = 1.$$
(10)

Therefore it must be at the same time

$$z = 1 \quad \text{and} \quad a = 1. \tag{11}$$

- 2. Random networks in the $\mathbb{G}(N,p)$ ensemble with p = c/(N-1) where c > 0.
 - (a) Calculate the average number of triangles $\mathcal{N}_3^{\text{triangles}}$ in the network, by evaluating first the number of ways to select 3 nodes out of N nodes, and secondly the probability that the selected nodes are all connected to each other.
 - (b) Show that in the limit $N \to \infty$ the average number of triangles in the network is

$$\mathcal{N}_3^{\text{triangles}} \simeq \frac{1}{6}c^3.$$
 (12)

This means that the number of triangles is constant, neither growing or vanishing, in the limit of large N.

- Notes on the solution
 - (a) The number of ways to choosing 3 nodes out of the N nodes of the network is given by $\binom{N}{3}$. The probability that any three nodes of the network are all linked is given by p^3 . Therefore we have that the average number of triangles $\mathcal{N}_3^{\text{triangles}}$ in a network of the $\mathbb{G}(N,p)$ ensemble with $p = \frac{c}{N-1}$ is given by

$$\mathcal{N}_3^{\text{triangles}} = \begin{pmatrix} N \\ 3 \end{pmatrix} p^3$$

(b) In the large network limit, $N \to \infty$ we have:

$$\mathcal{N}_{3}^{\text{triangles}} = \binom{N}{3} p^{3} = \frac{N!}{3!(N-3)!} \left(\frac{c}{N-1}\right)^{3}$$
$$= \frac{1}{3!} \frac{N(N-1)(N-2)}{(N-1)^{3}} c^{3} = \frac{1}{6} c^{3}.$$
(13)

4