Complex Networks (MTH6142) Solutions of Formative Assignment 5

- 1. Random networks in the $\mathbb{G}(N, p)$ ensemble

Assume that $p=a / N^{z}$, where $a>0$ and $z \geq 0$, and a, z independent of N.
(a) Determine the average degree $\langle k\rangle$ in the limit $N \rightarrow \infty$ for the following values of the parameters
(i) $a=0.5, z=1$;
(ii) $a=2, z=1$;
(iii) $a>0, z=2$;
(iv) $a>0, z=0.5$.
(b) In which of the above cases does the random network contain a giant component in the limit $N \rightarrow \infty$?
(c) Given $p=a / N^{z}$ with generic values of $a>0, z \geq 0$ determine the average degree $\langle k\rangle$ in the large network limit $N \rightarrow \infty$.
(d) Determine the conditions on a and z for these random networks to be subcritical, i.e. with a fraction S of nodes in the giant component given by $S=0$ in the $N \rightarrow \infty$ limit.
(e) Determine the conditions on a and z for these random networks to be supercritical, i.e. with a non vanishing fraction S of nodes in the giant component $(S>0)$ in the $N \rightarrow \infty$ limit.
(f) Determine the conditions on a and z for which these random networks are critical, in the large network limit, i.e. in the limit $N \rightarrow \infty$.

- Notes on the solution
(a) \& (b) The average degree $\langle k\rangle$ is given by

$$
\begin{equation*}
\langle k\rangle=p(N-1)=\frac{a}{N^{z}}(N-1) . \tag{1}
\end{equation*}
$$

For the following parameter values we have
(i) $a=0.5, z=1$;

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\langle k\rangle=\lim _{N \rightarrow \infty} \frac{0.5}{N}(N-1)=0.5 \tag{2}
\end{equation*}
$$

The network does not contain a giant component.
(ii) $a=2, z=1$;

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\langle k\rangle=\lim _{N \rightarrow \infty} \frac{2}{N}(N-1)=2 \tag{3}
\end{equation*}
$$

The network contains a giant component.
(iii) $a>0, z=2$;

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\langle k\rangle=\lim _{N \rightarrow \infty} \frac{a}{N^{2}}(N-1)=0 \tag{4}
\end{equation*}
$$

The network does not contain a giant component.
(iv) $a>0, z=0.5$.

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\langle k\rangle=\lim _{N \rightarrow \infty} \frac{a}{N^{1 / 2}}(N-1)=\infty . \tag{5}
\end{equation*}
$$

The network contains a giant component.
(c) The average degree of a network in the $\mathbb{G}(N, p)$ ensemble is given by $\langle k\rangle=p(N-1)$. By inserting in this expression the value of p given by $p=a / N^{z}$, we get

$$
\begin{equation*}
\langle k\rangle=p(N-1)=\frac{a}{N^{z}}(N-1) \simeq \frac{a}{N^{z-1}} \tag{6}
\end{equation*}
$$

where the last expression is valid for $N \gg 1$.
The limit for $N \rightarrow \infty$ this gives

$$
\lim _{N \rightarrow \infty}\langle k\rangle=\left\{\begin{array}{ccc}
0 & \text { if } & z>1 \tag{7}\\
a & \text { if } & z=1 \\
\infty & \text { if } & z<1
\end{array}\right.
$$

(d) A random network is subcritical if $\langle k\rangle<1$. Therefore the condition for a random network with $p=a / N^{z}$ to be subcritical in the limit $N \rightarrow \infty$ is given by

$$
\begin{equation*}
\langle k\rangle=\lim _{N \rightarrow \infty} \frac{a}{N^{z}}(N-1)=\lim _{N \rightarrow \infty} \frac{a}{N^{z-1}}<1 . \tag{8}
\end{equation*}
$$

Therefore one of the two following conditions (I) or (II) must be met

$$
\begin{array}{ll}
\text { (I) } & z>1 \\
\text { (II) } & z=1 \quad \text { and } \quad a<1 .
\end{array}
$$

(e) A random network is supercritical if $\langle k\rangle>1$. Therefore the condition for a random network with $p=a / N^{z}$ to be supercritical in the limit $N \rightarrow \infty$ is given by

$$
\begin{equation*}
\langle k\rangle=\lim _{N \rightarrow \infty} \frac{a}{N^{z}}(N-1)=\lim _{N \rightarrow \infty} \frac{a}{N^{z-1}}>1 . \tag{9}
\end{equation*}
$$

Therefore one of the two following conditions (III) or (IV) must be met

$$
\begin{array}{ll}
\text { (III) } & z<1 \\
\text { (IV) } & z=1 \quad \text { and } \quad a>1 .
\end{array}
$$

(f) A random network is critical if $\langle k\rangle=1$. Therefore the condition for a random network with $p=a / N^{z}$ to be critical in the limit $N \rightarrow \infty$ is given by

$$
\begin{equation*}
\langle k\rangle=\lim _{N \rightarrow \infty} \frac{a}{N^{z}}(N-1)=\lim _{N \rightarrow \infty} \frac{a}{N^{z-1}}=1 . \tag{10}
\end{equation*}
$$

Therefore it must be at the same time

$$
\begin{equation*}
z=1 \quad \text { and } \quad a=1 \tag{11}
\end{equation*}
$$

- 2. Random networks in the $\mathbb{G}(N, p)$ ensemble with $p=c /(N-1)$ where $c>0$.
(a) Calculate the average number of triangles $\mathcal{N}_{3}^{\text {triangles }}$ in the network, by evaluating first the number of ways to select 3 nodes out of N nodes, and secondly the probability that the selected nodes are all connected to each other.
(b) Show that in the limit $N \rightarrow \infty$ the average number of triangles in the network is

$$
\begin{equation*}
\mathcal{N}_{3}^{\text {triangles }} \simeq \frac{1}{6} c^{3} \tag{12}
\end{equation*}
$$

This means that the number of triangles is constant, neither growing or vanishing, in the limit of large N.

- Notes on the solution
(a) The number of ways to choosing 3 nodes out of the N nodes of the network is given by $\binom{N}{3}$. The probability that any three nodes of the network are all linked is given by p^{3}. Therefore we have that the average number of triangles $\mathcal{N}_{3}^{\text {triangles }}$ in a network of the $\mathbb{G}(N, p)$ ensemble with $p=\frac{c}{N-1}$ is given by

$$
\mathcal{N}_{3}^{\text {triangles }}=\binom{N}{3} p^{3}
$$

(b) In the large network limit, $N \rightarrow \infty$ we have:

$$
\begin{align*}
\mathcal{N}_{3}^{\text {triangles }} & =\binom{N}{3} p^{3}=\frac{N!}{3!(N-3)!}\left(\frac{c}{N-1}\right)^{3} \\
& =\frac{1}{3!} \frac{N(N-1)(N-2)}{(N-1)^{3}} c^{3}=\frac{1}{6} c^{3} \tag{13}
\end{align*}
$$

