

Complex Networks (MTH6142) Formative Assignment 5

• 1. Random networks in the $\mathbb{G}(N,p)$ ensemble

Assume that $p = a/N^z$, where a > 0 and $z \ge 0$, and a, z independent on N.

- (a) Determine the average degree $\langle k\rangle$ in the limit $N\to\infty$ for the following values of the parameters
 - (i) a = 0.5, z = 1;
 - (ii) a = 2, z = 1;
 - (iii) a > 0, z = 2;
 - (iv) a > 0, z = 0.5.
- (b) In which of the above cases does the random network contain a giant component in the limit $N \to \infty$?.
- (c) Given $p = a/N^z$ with generic values of $a > 0, z \ge 0$ determine the average degree $\langle k \rangle$ in the large network limit $N \to \infty$.
- (d) Determine the conditions on a and z for these random networks to be subcritical, i.e. with a fraction S of nodes in the giant component given by S = 0 in the $N \to \infty$ limit.
- (e) Determine the conditions on a and z for these random networks to be supercritical, i.e. with a non vanishing fraction S of nodes in the giant component (S > 0) in the $N \to \infty$ limit.
- (f) Determine the conditions on a and z for which these random networks are critical, in the large network limit, i.e. in the limit $N \to \infty$.

- 2. Random networks in the $\mathbb{G}(N,p)$ ensemble with p = c/(N-1) where c > 0.
 - (a) Calculate the average number of triangles $\mathcal{N}_3^{\mathrm{triangles}}$ in the network, by evaluating first the number of ways to select 3 nodes out of N nodes, and secondly the probability that the selected nodes are all connected to each other.
 - (b) Show that in the limit $N \to \infty$ the average number of triangles in the network is

$$\mathcal{N}_3^{\text{triangles}} \simeq \frac{1}{6}c^3.$$
 (1)

This means that the number of triangles is constant, neither growing or vanishing, in the limit of large N.