Complex Networks (MTH6142) Formative Assignment 5

- 1. Random networks in the $\mathbb{G}(N, p)$ ensemble Assume that $p=a / N^{z}$, where $a>0$ and $z \geq 0$, and a, z independent on N.
(a) Determine the average degree $\langle k\rangle$ in the limit $N \rightarrow \infty$ for the following values of the parameters
(i) $a=0.5, z=1$;
(ii) $a=2, z=1$;
(iii) $a>0, z=2$;
(iv) $a>0, z=0.5$.
(b) In which of the above cases does the random network contain a giant component in the limit $N \rightarrow \infty$?
(c) Given $p=a / N^{z}$ with generic values of $a>0, z \geq 0$ determine the average degree $\langle k\rangle$ in the large network limit $N \rightarrow \infty$.
(d) Determine the conditions on a and z for these random networks to be subcritical, i.e. with a fraction S of nodes in the giant component given by $S=0$ in the $N \rightarrow \infty$ limit.
(e) Determine the conditions on a and z for these random networks to be supercritical, i.e. with a non vanishing fraction S of nodes in the giant component $(S>0)$ in the $N \rightarrow \infty$ limit.
(f) Determine the conditions on a and z for which these random networks are critical, in the large network limit, i.e. in the limit $N \rightarrow \infty$.
- 2. Random networks in the $\mathbb{G}(N, p)$ ensemble with $p=c /(N-1)$ where $c>0$.
(a) Calculate the average number of triangles $\mathcal{N}_{3}^{\text {triangles }}$ in the network, by evaluating first the number of ways to select 3 nodes out of N nodes, and secondly the probability that the selected nodes are all connected to each other.
(b) Show that in the limit $N \rightarrow \infty$ the average number of triangles in the network is

$$
\begin{equation*}
\mathcal{N}_{3}^{\text {triangles }} \simeq \frac{1}{6} c^{3} \tag{1}
\end{equation*}
$$

This means that the number of triangles is constant, neither growing or vanishing, in the limit of large N.

