Complex Networks (MTH6142) Solutions of Formative Assignment 4

- 1. Degree distribution of random graphs

A random graph ensemble $\mathbb{G}(N, p)$ with $p=\frac{c}{N-1}$ has a binomial degree distribution

$$
\begin{equation*}
P_{B}(k)=\binom{N-1}{k} p^{k}(1-p)^{N-1-k}, \tag{1}
\end{equation*}
$$

that in the limit of $N \gg 1$ can be approximated by a Poisson distribution $P_{P}(k)$ given by

$$
\begin{equation*}
P_{P}(k)=\frac{1}{k!} c^{k} e^{-c} . \tag{2}
\end{equation*}
$$

(a) Calculate the generating function

$$
\begin{equation*}
G_{B}(x)=\sum_{k=0}^{N-1} P_{B}(k) x^{k} \tag{3}
\end{equation*}
$$

for the binomial degree distribution $P_{B}(k)$ given by Eq. (1).
(b) Using the properties of the generating functions, evaluate the first moment $\langle k\rangle$ and the second moment $\langle k(k-1)\rangle$ of the degree distribution $P_{B}(k)$ given by Eq. (1).
(c) Calculate the generating function

$$
\begin{equation*}
G_{P}(x)=\sum_{k=0}^{\infty} P_{P}(k) x^{k} \tag{4}
\end{equation*}
$$

for the Poisson degree distribution $P_{P}(k)$ given by Eq. (2).
(d) Using the properties of the generating functions, evaluate the first moment $\langle k\rangle$ and the second moment $\langle k(k-1)\rangle$ of the degree distribution $P_{P}(k)$ given by Eq. (2).
(e) Show that the first $\langle k\rangle$ and second moment $\langle k(k-1)\rangle$ of the binomial distribution $P_{B}(k)$ obtained in (b) are the same as the first $\langle k\rangle$ and second $\langle k(k-1)\rangle$ moments of the Poisson distribution $P_{P}(k)$ obtained in (d), as long as $p=\frac{c}{N-1}$ with c constant and $N \rightarrow \infty$.

- Notes on the solution
(a) The generating function $G_{B}(x)$ is given by

$$
\begin{equation*}
G_{B}(x)=\sum_{k=0}^{N-1} P_{B}(k) x^{k}=(1-p+p x)^{N-1} \tag{5}
\end{equation*}
$$

(b) The first are second moment of the degree distribution $P_{B}(k)$ are given by

$$
\begin{align*}
\langle k\rangle & =\left.\frac{d G_{B}(x)}{d x}\right|_{x=1}=p(N-1), \\
\langle k(k-1)\rangle & =\left.\frac{d^{2} G_{B}(x)}{d x^{2}}\right|_{x=1}=p^{2}(N-1)(N-2) . \tag{6}
\end{align*}
$$

(c) The generating function $G_{P}(x)$ is given by

$$
\begin{equation*}
G_{P}(x)=\sum_{k=0}^{\infty} P_{P}(x) x^{k}=e^{-c+c x} \tag{7}
\end{equation*}
$$

(d) The first and second moment of the Poisson degree distribution can be obtained by differentiating the generating function $G_{P}(x)$. In particular we have

$$
\begin{align*}
\langle k\rangle & =\left.\frac{d G_{B}(x)}{d x}\right|_{x=1}=c \\
\langle k(k-1)\rangle & =\left.\frac{d^{2} G_{B}(x)}{d x^{2}}\right|_{x=1}=c^{2} \tag{8}
\end{align*}
$$

(e) Since we have $c=p(N-1)$ we have always

$$
\begin{equation*}
\langle k\rangle=p(N-1)=c . \tag{9}
\end{equation*}
$$

Moreover in the large network limit $N \rightarrow \infty$ we have

$$
\begin{equation*}
\langle k(k-1)\rangle=p^{2}(N-1)(N-2)=\frac{c^{2}}{N^{2}}(N-1)(N-2) \rightarrow c^{2} \tag{10}
\end{equation*}
$$

Therefore the first and second moment of the binomial distribution $P_{B}(k)$ with $p=\frac{c}{N-1}$ in the large network limit $N \rightarrow \infty$, are the same as the first and second moment of the Poisson distribution $P_{P}(k)$ with average degree c.

- 2. A given random network

Consider a random network in the ensemble $\mathbb{G}(N, p)$ with $N=4 \times 10^{6}$ nodes and a linking probability $p=10^{-4}$.
(a) Calculate the average degree $\langle k\rangle$ of this network.
(b) Calculate the standard deviation σ_{P} using the approximated degree distribution given by Eq. (2).
(c) Assume that you observe a node with degree 2×10^{3}. How many standard deviations is this observation from the mean? Is this an expected observation or is this an unexpected observation?

- Notes on the solution
(a) The average degree of the network is $\langle k\rangle=p(N-1)=10^{-4} \times(4 \times$ $\left.10^{6}-1\right) \simeq 400$.
(b) The degree distribution $P(k)$ can be approximated with a Poisson distribution with average degree $\langle k\rangle=c \simeq 400$, i.e.

$$
\begin{equation*}
P(k)=\frac{1}{k!} c^{k} e^{-c}=\frac{1}{k!}(400)^{k} e^{-400} \tag{11}
\end{equation*}
$$

The second moment $\langle k(k-1)\rangle=c^{2}$.
The variance of the degree distribution is $\sigma_{P}^{2}=\langle k(k-1)\rangle+\langle k\rangle-$ $\langle k\rangle^{2}=c$.
The standard deviation is $\sigma_{P}=\sqrt{c}=\sqrt{p(N-1)} \simeq \sqrt{400)}=20$
(c) The observation is $k=2 \times 10^{3}$ it is 80 stardard deviations away from the mean. In fact

$$
\begin{equation*}
\frac{k-\langle k\rangle}{\sigma_{P}} \simeq \frac{2000-400}{20}=80 \tag{12}
\end{equation*}
$$

Therefore this observation is unexpected.

