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1 Introduction

1.1 Topics to be covered

In the course Statistical Modelling I, regression models were studied in which there was a
dependent variable, Y , and p− 1 explanatory variables, X1, . . . , Xp−1. The variable Y
was continuous quantitative and the Xs were quantitative. The focus of the course was the
general linear model given by

Y = Xβ + ϵ,

where Y = (Y1, . . . , Yn)
⊤ is the vector of responses, X is the n × p design matrix, β =

(β0, . . . , βp−1)
⊤ is the parameter vector and ϵ = (ϵ1, . . . , ϵn)

⊤ is the error vector. Note that
the number of columns p of X is greater than the number of explanatory variables p − 1,
since the matrix has an additional column in which all elements are equal to one. It was
usually assumed that ϵ is multivariate normal with zero mean vector and covariance matrix
σ2In, where In denotes the identity matrix of order n.

In this course, we consider the case where the Y s have error distribution models other than
a normal distribution. We first review the normal linear model from the perspective of the
likelihood. We then meet the exponential family of distributions and introduce generalised
linear models, a flexible generalisation of ordinary linear regression. It will then be shown
how these models may be fitted to binary response data and count data, leading to logistic
regression and Poisson regression, respectively. Finally, we show how to model survival data.
Throughout the course, the statistical computing package R will be used to illustrate the
main ideas.

1.2 Examples of generalised linear models

Each of the examples below can be formulated in the context of a generalised linear model.

Example 1.1 Binary response data.
Suppose that Yi ∼ Bin(ri, πi) for i = 1, 2, . . . , n, all independent, where πi depends on a
known covariate xi. For example, in a clinical trial, ri may be the number of patients given
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a dose xi of a new drug and Yi is the number of these giving a positive response. In this
case, we can consider the logistic model

log

(
πi

1− πi

)
= βo + β1xi.

Since E(Yi/ri) = πi, as we will see in Chapter 4, this means that we are using a logit link
function in a generalised linear model.

Example 1.2 Count data.
Suppose that Yi ∼ Poisson(µi) for i = 1, 2, . . . , n, all independent, where µi depends on a
known covariate xi, For example, Yi may be the number of AIDS deaths in month xi. In
this case, we can consider the Poisson regression model

log(µi) = β0 + β1xi.

Since E(Yi) = µi, as we will see in Chapter 5, this means that we are using a log link in a
generalised linear model.

Example 1.3 Normal response data.
Suppose that Yi ∼ N(µi, σ

2) for i = 1, 2, . . . , n, all independent, where µi depends on a
known covariate xi. For example, Yi may be the level of carbon dioxide at Mauna Loa, an
extinct volcano in Hawaii, in year xi. In this case, we can consider the linear regression
model

µi = β0 + β1xi.

Since E(Yi) = µi, as we will see in Chapter 2, this means that we are using an identity link
in a generalised linear model.
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2 Normal Linear Model

2.1 Likelihood

Suppose that the random variables Y1, . . . , Yn have a joint distribution which is specified,
except for the unknown parameters θ1, . . . , θp. As we will see later, in the context of the
normal linear model, these parameters will consist of the regression coefficients and the error
variance. In Statistical Modelling I, the method of least squares was used to estimate the
unknown parameters. Here, an alternative method of estimation is introduced, which is
more general and has better properties.

Definition 2.1 For discrete data y1, . . . , yn, the likelihood, L(θ1, . . . , θp; y1, . . . , yn), is the
joint probability mass function of the data, that is,

L(θ1, . . . , θp; y1, . . . , yn) = P (Y1 = y1, . . . , Yn = yn).

For continuous data y1, . . . , yn, the likelihood, L(θ1, . . . , θp; y1, . . . , yn), is the joint proba-
bility density function of the data, that is,

L(θ1, . . . , θp; y1, . . . , yn) = fY1,...,Yn(y1, . . . , yn).

If the Y values are independent, then for discrete distributions we have

L(θ1, . . . , θp; y1, . . . , yn) =
n∏

i=1

P (Yi = yi);

and for the continuous distributions we have

L(θ1, . . . , θp; y1, . . . , yn) =
n∏

i=1

fYi
(yi).

For all of the models in this course, the Y values will be assumed independent.

Example 2.2 Simple linear regression.
Suppose that Yi ∼ N(β0 + β1xi, σ

2) for i = 1, 2, . . . , n, all independent. Then the likelihood
is

L(β0, β1, σ
2; y1, . . . , yn) =

n∏
i=1

1√
2πσ2

exp

{
−(yi − β0 − β1xi)

2

2σ2

}

=

(
1√
2πσ2

)n

exp

{
− 1

2σ2

n∑
i=1

(yi − β0 − β1xi)
2

}

= (2πσ2)−
n
2 exp

{
− 1

2σ2

n∑
i=1

(yi − β0 − β1xi)
2

}
.

For notational convenience, we will sometimes write the data as a vector, y = (y1, . . . , yn)
⊤,

and write the parameters as a vector, θ = (θ1, . . . , θp)
⊤. So we write the likelihood as L(θ;y).
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2.2 Method of maximum likelihood

The maximum likelihood estimates of θ1, . . . , θp are the values of θ1, . . . , θp which maximise

the likelihood L(θ;y). The maximum likelihood estimator of θ is θ̂ = (θ̂1, . . . , θ̂p)
⊤, where

θ̂j = θ̂j(Y), j = 1, 2, . . . , p,

We usually find the maximum likelihood estimates by maximising the log-likelihood ℓ(θ;y) =
logL(θ;y) and then solving the likelihood equations

∂ℓ

∂θj
= 0, j = 1, 2, . . . , p.

Example 2.3 Simple linear regression revisited.
The log-likelihood is

ℓ(β0, β1, σ
2;y) = −n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(yi − β0 − β1xi)
2.

Thus, we have
∂ℓ

∂β0
=

1

σ2

n∑
i=1

(yi − β0 − β1xi),

∂ℓ

∂β1
=

1

σ2

n∑
i=1

xi(yi − β0 − β1xi)

and
∂ℓ

∂σ2
= − n

2σ2
+

1

2σ4

n∑
i=1

(yi − β0 − β1xi)
2.

Setting the first two derivatives to zero, we obtain

n∑
i=1

yi − nβ̂0 − β̂1

n∑
i=1

xi = 0

and
n∑

i=1

xiyi − β̂0

n∑
i=1

xi − β̂1

n∑
i=1

x2i = 0.

Now, the first of these equations yields

β̂0 = y − β̂1x.

Substituting this equation into the previous one, we have

n∑
i=1

xiyi − (y − β̂1x)
n∑

i=1

xi − β̂1

n∑
i=1

x2i = 0,

which may be rearranged to give

β̂1 =

∑n
i=1 xiyi − nxy∑n
i=1 x

2
i − nx2

=

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2
.
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Finally, setting the third derivative to zero, we obtain

σ̂2 =
1

n

n∑
i=1

(yi − β̂0 − β̂1xi)
2.

Note that the maximum likelihood estimates of β0 and β1 are the same as the least squares
estimates that were obtained in Statistical Modelling I. It was shown there that the least
squares estimators of β0 and β1 are unbiased. However, since

∑n
i=1(Yi−β̂0−β̂1xi)2/σ2 ∼ χ2

n−2,
σ̂2 is a biased estimate of σ2: an unbiased one is s2 = nσ̂2/(n− 2).

Example 2.4 Manatee data set.
Manatees are large, gentle sea creatures that live along the Florida coast. Many manatees
are killed or injured by powerboats. Below are data on powerboat registrations (x), in
thousands, and the number of manatees killed by boats (y) in Florida in the years 1977 to
1987.

Year 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
x 447 460 481 498 513 512 526 559 585 614 645
y 13 21 24 16 24 20 15 34 33 33 39

The data give
∑11

i=1 xi = 5, 840,
∑11

i=1 yi = 272,
∑11

i=1 xiyi = 149, 153 and
∑11

i=1 x
2
i =

3, 140, 490. So we have

β̂1 =
149, 153− 5, 840× 272/11

3, 140, 490− 5, 8402/11
= 0.1187

and

β̂0 =
272

11
− 0.1187× 5, 840

11
= −38.29.

It follows that the least squares regression line is

ŷi = µ̂i = −38.29 + 0.1187xi.

2.3 Asymptotic distribution of the maximum likelihood estimator

The following result, stated without proof, gives the asymptotic distribution of θ̂.

Theorem 2.1 Under fairly general conditions, for large n, θ̂ ∼ Np(θ, V
−1), where V is the

p× p (expected) Fisher information matrix with (i, j)-th element

vij = E

{
−∂

2ℓ(θ;Y)

∂θi∂θj

}
for i, j = 1, 2, . . . , p.

A consequence of this result is that every component of θ̂ is asymptotically normal, that
is, for large n, θ̂j ∼ N(θj, v

jj) for j = 1, 2, . . . , p, where vjj denotes the jth diagonal element
of V −1.
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Example 2.5 Simple linear regression revisited. In this case, the Fisher information matrix
(FIM) V is 3× 3. For the diagonal entries of this matrix, we have

∂2ℓ

∂β2
0

= − n

σ2
,

∂2ℓ

∂β2
1

= −
∑n

i=1 x
2
i

σ2
and

∂2ℓ

∂σ4
=

n

2σ4
− 1

σ6

n∑
i=1

(yi − β0 − β1xi)
2.

Off diagonal entries of the FIM require computing crossed derivatives

∂2ℓ

∂β0∂β1
= −

∑n
i=1 xi
σ2

,
∂2ℓ

∂β0∂σ2
= − 1

σ4

n∑
i=1

(yi − β0 − β1xi)

and
∂2ℓ

∂β1∂σ2
= − 1

σ4

n∑
i=1

xi(yi − β0 − β1xi).

After reversing signs and taking expectations, we have v11 = n/σ2, v22 =
∑n

i=1 x
2
i /σ

2,
v33 = n/(2σ4), v12 =

∑n
i=1 xi/σ

2 and v13 = v23 = 0. Note that, formally speaking, for the
expectation we require the notation Yi rather than yi. Collecting these results, we have

V =

 n
σ2

∑n
i=1 xi

σ2 0∑n
i=1 xi

σ2

∑n
i=1 x

2
i

σ2 0
0 0 n

2σ4

 .

Hence, we have

V −1 =


σ2

∑n
i=1 x

2
i

nSxx
−σ2x

Sxx
0

−σ2x
Sxx

σ2

Sxx
0

0 0 2σ4

n

 ,

where Sxx =
∑n

i=1(xi − x)2. This shows that, for large n, β̂0 ∼ N{β0, σ2
∑n

i=1 x
2
i /(nSxx)},

β̂1 ∼ N(β1, σ
2/Sxx) and σ̂2 ∼ N(σ2, 2σ4/n). Note that, from Statistical Modelling I, the

distributions of β̂0 and β̂1 are exact.

2.4 Multiple linear regression

So far, we have only applied the likelihood theory to the simple linear regression model in
which there is a single explanatory variable. Let us now consider multiple linear regression,
where there are p−1 explanatory variables. This means that Yi ∼ N(µi, σ

2) for i = 1, 2, . . . , n,
all independent, where

µi = β0 + β1x1i + . . .+ βp−1xp−1,i = x⊤
i β

and xi = (1, x1i, . . . , xp−1,i)
⊤.

The likelihood is

L(β, σ2;y) =
n∏

i=1

1√
2πσ2

exp

{
−(yi − x⊤

i β)
2

2σ2

}

=

(
1√
2πσ2

)n

exp

{
− 1

2σ2

n∑
i=1

(yi − x⊤
i β)

2

}

= (2πσ2)−
n
2 exp

{
− 1

2σ2

n∑
i=1

(yi − x⊤
i β)

2

}
.
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Now, since
n∑

i=1

(yi − x⊤
i β)

2 = (y −Xβ)⊤(y −Xβ),

where X is the n× p design matrix with ith row x⊤
i , we may write

L(β, σ2;y) = (2πσ2)−
n
2 exp

{
− 1

2σ2
(y −Xβ)⊤(y −Xβ)

}
.

So the log-likelihood is

ℓ(β, σ2;y) = −n
2
log(2πσ2)− 1

2σ2
(y −Xβ)⊤(y −Xβ).

We have the following derivatives of the log-likelihood

∂ℓ

∂β
=

1

σ2
X⊤(y −Xβ) and

∂ℓ

∂σ2
= − n

2σ2
+

1

2σ4
(y −Xβ)⊤(y −Xβ).

Assume that rank(X) = p, so that the p× p matrix X⊤X is non-singular. Then, setting the
above derivatives to zero, we obtain the maximum likelihood estimates

β̂ = (X⊤X)−1X⊤y and σ̂2 =
1

n
(y −Xβ̂)⊤(y −Xβ̂).

Again, the maximum likelihood estimate of β is the same as the least squares estimate that
was obtained in Statistical Modelling I. An unbiased estimate of σ2 is s2 = nσ̂2/(n− p).

We now compute the Fisher information matrix (FIM). We have diagonal terms

∂2ℓ

∂β∂β⊤ = − 1

σ2
X⊤X and

∂2ℓ

∂σ4
=

n

2σ4
− 1

σ6
(y −Xβ)⊤(y −Xβ),

as well as cross derivative term

∂2ℓ

∂β∂σ2
= − 1

σ4
X⊤(y −Xβ).

After sign reversal and taking expectations, the Fisher information matrix is

V =

(
1
σ2X

⊤X 0
0⊤ n

2σ4

)
.

Hence, we have

V −1 =

(
σ2(X⊤X)−1 0

0⊤ 2σ4

n

)
.

This shows that, for large n, β̂ ∼ Np{β, σ2(X⊤X)−1} and σ̂2 ∼ N(σ2, 2σ4/n). Note that,

from Statistical Modelling I, the distribution of β̂ is exact.

2.5 Generalised likelihood ratio tests

We assume that Y1, . . . , Yn have a joint distribution which depends on the unknown param-
eters θ1, . . . , θp. The set of all possible values of θ is called the parameter space Ω.

A hypothesis restricts θ to lie in ω, where ω ⊂ Ω. If we wish to test whether θ ∈ ω, then
we test the null hypothesis H0 : θ ∈ ω against the alternative hypothesis H1 : θ ∈ Ω\ω.
If ω is a single point, the hypothesis is simple. Otherwise, the hypothesis is composite.
The set of all possible values y of the random vector Y is called the sample space S.
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Example 2.6 Simple linear regression revisited. Suppose that Yi ∼ N(β0 + β1xi, σ
2) for

i = 1, 2, . . . , n, all independent, and that we wish to test H0 : β1 = 0 against H1 : β1 ̸= 0.
Then Ω = R2 × R+, ω = R× {0} × R+ and S = Rn.

The critical region is the subset R ⊆ S such that we reject H0 if and only if y ∈ R. A
general approach to finding R is now presented.

Definition 2.7 The generalised likelihood ratio test has critical region R = {y : Λ(y) < aα},
where

Λ(y) =
maxθ∈ω L(θ;y)

maxθ∈Ω L(θ;y)

is the generalised likelihood ratio and aα is a constant chosen to give a test with signif-
icance level α. Clearly, 0 ≤ Λ(y) ≤ 1, since ω ⊂ Ω.

Let θ̂0 be the value of θ which maximises the likelihood L(θ;y) in ω. Then we may write

Λ(y) =
L(θ̂0;y)

L(θ̂;y)
,

where θ̂ is the maximum likelihood estimate of θ. We call θ̂0 the restricted maximum
likelihood estimate of θ under H0.

Example 2.8 Simple linear regression: testing H0 : β1 = 0 against H1 : β1 ̸= 0. Recall that
the model is Yi ∼ N(β0 + β1xi, σ

2) for i = 1, 2, . . . , n, all independent with likelihood

L(β0, β1, σ
2;y) = (2πσ2)−

n
2 exp

{
− 1

2σ2

n∑
i=1

(yi − β0 − β1xi)
2

}
.

For the development below, we require maximum likelihood estimates of the model pa-
rameters β0, β1 and σ2, computed under two cases: unrestricted and restricted to H0.
Unrestricted maximum likelihood estimates are β̂0 = y − β̂1x, β̂1 = Sxy/Sxx and σ̂2 =∑n

i=1(yi − β̂0 − β̂1xi)
2/n, where Sxy =

∑n
i=1(xi − x)(yi − y); restricted maximum likelihood

estimates β̂00 = y, β̂10 = 0 and σ̂2
0 =

∑n
i=1(yi − y)2/n. The generalised likelihood ratio is

Λ(y) =
L(β̂00, β̂10, σ̂

2
0;y)

L(β̂0, β̂1, σ̂2;y)
=

(2πσ̂2
0)

−n
2 exp

{
− 1

2σ̂2
0

∑n
i=1(yi − β̂00 − β̂10xi)

2
}

(2πσ̂2)−
n
2 exp

{
− 1

2σ̂2

∑n
i=1(yi − β̂0 − β̂1xi)2

} =

(
σ̂2

σ̂2
0

)n
2

.

The likelihood ratio L(ȳ, 0,
∑n

i=1(yi− ȳ)2)/L(ȳ− β̂1x̄, sxy/sxx,
∑n

i=1(yi− ȳ)2) = (σ̂2/σ̂2
0)

n
2 can

be written using σ̂2 = SSE/n and σ̂2
0 = SSTC/n, where SSE is the sum of squares of the

error and SSTC is the total corrected sum of squares. The development is as follows(
σ̂2

σ̂2
0

)n
2

=

{∑n
i=1(yi − β̂0 − β̂1xi)

2∑n
i=1(yi − y)2

}n
2

=

[∑n
i=1{(yi − y)− β̂1(xi − x)}2∑n

i=1(yi − y)2

]n
2

=

[
SSE

SSTC

]n
2

.

Since the critical region is R = {y : Λ(y) < aα}, we reject H0 if
[

SSE

SSTC

]n
2
< aα. We next

transform the previous inequality into an inequality involving the known F ratioMSR/MSE

of linear regression. We use the fact that the total corrected sum of squares satisfies SSTC =
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SSE + SSR, where SSR is the sum of squares of the regression. The starting point is
transforming the inequality above to

SSE

SSE + SSR

< a2/nα ,

and further manipulation (details left as exercise) leads into the inequality with F ratio

MSR

MSE

=
SSR/1

SSE/(n− 2)
> (n− 2)

(
a−2/n
α − 1

)
.

UnderH0, the distribution ofMSR/MSE above is well known from regression theory. It is the
ratio of two chi-square distributions divided by their degrees of freedom, henceMSR/MSE ∼
F1,n−2. If F1,n−2,α is the upper α quantile of F1,n−2 distribution, we reject H0 if

MSR

MSE

> F1,n−2,α.

We manipulated the likelihood ratio Λ(y) and its critical region to show equivalence
with the F test for H0 : β1 = 0 in regression. It can be shown that all the standard tests in
normal-theory problems are generalised likelihood ratio tests.

Example 2.9 Manatee example revisited. The test statistic is MSR/MSE = 24.723. As
F1,n−2,0.05 = 5.117, we reject H0 : β1 = 0 and conclude that β1 ̸= 0.

Equivalently, by inversion of the above expression for MSR/MSE, we retrieve Λ(y) =
6.744 × 10−8, and the critical region are all those values smaller than 0.003598 (using the
same inversion). The conclusion remains unchanged and we reject H0.

2.6 Wilks’ theorem

In more complex cases, we cannot obtain the exact distribution of the generalised likelihood
ratio, Λ(Y). Instead, we use the following result, stated without proof, which gives the
asymptotic distribution of −2 log{Λ(Y)} under H0.

Theorem 2.2 Wilks’ theorem.
Suppose that Y1, . . . , Yn have a joint distribution depending on the parameters θ1, . . . , θp and
consider testing H0 : θ ∈ ω against H1 : θ ∈ Ω\ω, where dim(ω) = p0. Then, under
regularity conditions, when H0 is true and n is large, −2 log{Λ(Y)} ∼ χ2

s, where s = p− p0
is the number of constraints imposed by H0.

By the above result, for large n, the critical region for a test with approximate significance
level α is R = {y : −2 log{Λ(y)} > χ2

s,α}. Note that p0 is the number of unknown parameters
under H0.

Example 2.10 Simple linear regression. For testing H0 : β1 = 0 against H1 : β1 ̸= 0, we
have θ = (β0, β1, σ

2) so p = 3 and p0 = 2. The asymptotic distribution of −2 log{Λ(y)} is
χ2
1 as s = p− p0 = 3− 2 = 1. In this case, the exact distribution of Λ(Y) can be obtained.

As we will see in Chapter 3, the above result provides the basis for the analysis of deviance,
which is used to assess the fit of a generalised linear model and to compare alternative models.
In the normal case considered in Statistical Modelling I, the analysis of deviance reduces to
the analysis of variance, where the distributions of the test statistics are exact.
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3 Generalised Linear Models

3.1 Exponential families

There is a class of distributions which includes the normal, Poisson, binomial, gamma, chi-
squared, exponential and others.

Definition 3.1 The random variable Y with parameters θ1, . . . , θp has a distribution in the
exponential family if its range does not depend on the parameters and its probability mass
function or probability density function can be written in the form

fY (y;θ) = exp

{
p∑

j=1

aj(y)bj(θ) + c(θ) + d(y)

}
.

Note that, for the one-parameter exponential family, this reduces to

fY (y; θ) = exp{a(y)b(θ) + c(θ) + d(y)}.

If a(y) = y, then the distribution is in canonical form and b(θ) is called the natural
parameter. All of the distributions that we consider in this course will be in canonical
form.

Example 3.2 Poisson distribution.
Suppose that Y ∼ Poisson(µ). Then we may write

fY (y;µ) =
µye−µ

y!

= exp{y log µ− µ− log(y!)}.

Thus, we have a(y) = y, b(µ) = log µ, c(µ) = −µ and d(y) = − log(y!). It follows that the
distribution is in canonical form and log µ is the natural parameter.

The following result gives the mean and variance of a(Y ).

Lemma 3.3 Suppose that Y has a distribution in the one-parameter exponential family.
Then

E{a(Y )} = −c
′(θ)

b′(θ)

and

Var{a(Y )} =
b′′(θ)c′(θ)− c′′(θ)b′(θ)

{b′(θ)}3
.

Proof We prove the result in the continuous case only. The proof in the discrete case is
similar. By definition, we know that∫

S

exp{a(y)b(θ) + c(θ) + d(y)}dy = 1,

where S is the sample space. Differentiating both sides with respect to θ gives∫
S

{a(y)b′(θ) + c′(θ)}fY (y; θ)dy = 0,
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which implies that
E{a(Y )b′(θ) + c′(θ)} = 0.

It follows that E{a(Y )} = −c′(θ)/b′(θ). Continuing, differentiating the penultimate equation
with respect to θ yields∫

S

[
{a(y)b′(θ) + c′(θ)}2 + {a(y)b′′(θ) + c′′(θ)}

]
fY (y; θ)dy = 0,

which implies that

E
[
{a(Y )b′(θ) + c′(θ)}2 + {a(Y )b′′(θ) + c′′(θ)}

]
= 0.

Since E{a(Y )} = −c′(θ)/b′(θ), this becomes

{b′(θ)}2E
[
{a(Y )}2

]
− {c′(θ)}2 − b′′(θ)c′(θ)

b′(θ)
+ c′′(θ) = 0,

so that

E
[
{a(Y )}2

]
=

{c′(θ)}2

{b′(θ)}2
+
b′′(θ)c′(θ)

{b′(θ)}3
− c′′(θ)

{b′(θ)}2
.

Hence, we obtain

Var{a(Y )} = E
[
{a(Y )}2

]
− [E{a(Y )}]2

=
{c′(θ)}2

{b′(θ)}2
+
b′′(θ)c′(θ)

{b′(θ)}3
− c′′(θ)

{b′(θ)}2
− {c′(θ)}2

{b′(θ)}2

=
b′′(θ)c′(θ)− c′′(θ)b′(θ)

{b′(θ)}3
,

which completes the proof. 2

Example 3.4 Poisson example revisited.
Suppose that Y ∼ Poisson(µ). Then we know that b(µ) = log µ and c(µ) = −µ. It follows
that b′(µ) = 1/µ, b′′(µ) = −1/µ2, c′(µ) = −1 and c′′(µ) = 0. So we have

E(Y ) = − −1

1/µ
= µ

and

Var(Y ) =
(−1/µ2 ×−1)− (0× 1/µ)

1/µ3
= µ,

which confirms what we know.

Now suppose that the random variables Y1, . . . , Yn are independent with distributions
from the same subfamily of the exponential family with parameter θ. Then the likelihood
is

L(θ;y) =
n∏

i=1

exp{a(yi)b(θ) + c(θ) + d(yi)}

= exp

{
n∑

i=1

a(yi)b(θ) + nc(θ) +
n∑

i=1

d(yi)

}
.

As we will see in the next section, in a generalised linear model, the distribution of each Yi
is in canonical form and depends on a single parameter θi.

11



3.2 The generalised linear model

The idea of a generalised linear model was introduced to unify many statistical methods
involving linear combinations of parameters.

Assume that the random variables Y1, . . . , Yn are independent with distributions from the
same subfamily of the exponential family with the following properties. The distribution of
each Yi is in canonical form and depends on a single parameter θi, with the θi not necessarily
being the same. Then the likelihood is

L(θ;y) =
n∏

i=1

exp{yib(θi) + c(θi) + d(yi)}

= exp

{
n∑

i=1

yib(θi) +
n∑

i=1

c(θi) +
n∑

i=1

d(yi)

}
,

where θ = (θ1, . . . , θn)
⊤.

The θs themselves are not usually of direct interest, since there is one for each observation.
For a generalised linear model, we consider a smaller set of parameters β1, . . . , βp, where
p < n. We suppose that

g(µi) = β⊤xi,

where µi = E(Yi), g is a monotonic differentiable function called the link function, β =
(β1, . . . , βp)

⊤ and xi = (xi1, . . . , xip)
⊤. In what follows, we write ηi = g(µi).

In normal linear models, the link function is the identity. This makes sense because µi

and β⊤xi can take any values on the real line. However, if we are dealing with counts, where
the Poisson distribution is appropriate, then µi > 0. In this case, if we take ηi = log(µi),
which implies that µi = eηi > 0, then this would seem to be a better choice of link function
than taking ηi = µi, the identity link. For the binomial distribution, if we consider the
observations as proportions, then they must lie between 0 and 1. Therefore, we look for link
functions that map (0, 1) onto the real line. Three commonly used link functions are the
logit link

η = log

(
π

1− π

)
,

the probit link
η = Φ−1(π),

where Φ denotes the standard normal distribution function, and the complementary log-log
link

η = log{− log(1− π)}.

3.3 Fitting the model

We now show how to obtain the maximum likelihood estimates of the parameters β1, . . . , βp
in a generalised linear model.

The log-likelihood is

ℓ(θ;y) =
n∑

i=1

yib(θi) +
n∑

i=1

c(θi) +
n∑

i=1

d(yi).

We know that

E(Yi) = µi = −c
′(θi)

b′(θi)

12



from Lemma 3.3 and

g(µi) = β⊤xi =

p∑
j=1

xijβj = ηi,

where g is a monotonic differentiable function. Also, again from Lemma 3.3,

Var(Yi) =
b′′(θi)c

′(θi)− c′′(θi)b
′(θi)

{b′(θi)}3
.

Now, we have
∂ℓ

∂βj
=

n∑
i=1

∂ℓi
∂βj

,

where
ℓi = yib(θi) + c(θi) + d(yi).

By the chain rule, we can write
∂ℓi
∂βj

=
∂ℓi
∂θi

∂θi
∂µi

∂µi

∂βj
.

We consider each of these partial derivatives in turn. First, we have

∂ℓi
∂θi

= yib
′(θi) + c′(θi) = b′(θi)(yi − µi).

Next, we see that

∂µi

∂θi
=

−b′(θi)c′′(θi) + c′(θi)b
′′(θi)

{b′(θi)}2
= b′(θi)Var(Yi).

Finally, again by the chain rule, we have

∂µi

∂βj
=
∂µi

∂ηi

∂ηi
∂βj

= xij
∂µi

∂ηi
.

Hence, we obtain
∂ℓi
∂βj

=
(yi − µi)xij
Var(Yi)

∂µi

∂ηi
.

It follows that
∂ℓ

∂βj
=

n∑
i=1

(yi − µi)xij
Var(Yi)

∂µi

∂ηi
.

To obtain the maximum likelihood estimates of β1, . . . , βp, we need to solve the likelihood
equations ∂ℓ/∂βj = 0 for j = 1, 2, . . . , p. In general, these are non-linear and they need to
be solved numerically by iteration.

One approach is to use the Newton-Raphson method. Here, the mth approximation
β(m) is given by

β(m) = β(m−1) −
{
H(m−1)

}−1 ∂ℓ

∂β

∣∣∣∣
β=β(m−1)

,

where H(m−1) is the Hessian matrix of ℓ evaluated at β = β(m−1), which has (j, k)th
element

h
(m−1)
jk =

∂2ℓ

∂βj∂βk

∣∣∣∣
β=β(m−1)

for j, k = 1, 2, . . . , p. An alternative procedure, which is sometimes simpler, is Fisher’s
method of scoring. It involves replacing the Hessian matrix by its expected value, which
is minus the Fisher information matrix V . The following result, stated without proof, shows
how V may be calculated from ∂ℓ/∂βj for j = 1, 2, . . . , p.

13



Theorem 3.1 Suppose that the random variables Y1, . . . , Yn have distributions depending on
the parameters β1, . . . , βp and that their ranges do not depend on the parameters. Then

E

{
−∂

2ℓ(β;Y)

∂βj∂βk

}
= E

{
∂ℓ(β;Y)

∂βj

∂ℓ(β;Y)

∂βk

}
for j, k = 1, 2, . . . , p.

Using the above result, we can write

E

(
− ∂2ℓi
∂βj∂βk

)
= E

(
∂ℓi
∂βj

∂ℓi
∂βk

)
= E

{
(Yi − µi)xij
Var(Yi)

∂µi

∂ηi

(Yi − µi)xik
Var(Yi)

∂µi

∂ηi

}
=

xijxik
{Var(Yi)}2

(
∂µi

∂ηi

)2

E
{
(Yi − µi)

2
}

=
xijxik
Var(Yi)

(
∂µi

∂ηi

)2

.

Therefore, the (j, k)th element of the Fisher information matrix is

vjk = E

(
− ∂2ℓ

∂βj∂βk

)
=

n∑
i=1

xijxik
Var(Yi)

(
∂µi

∂ηi

)2

.

Hence, the Fisher information matrix is

V = X⊤WX,

where W = diag(w1, . . . , wn) and

wi =
1

Var(Yi)

(
∂µi

∂ηi

)2

.

We call wi the iterative weight for the ith observation. By Theorem 2.1, for large n,
β̂ ∼ Np{β, (X⊤WX)−1}. Note that, in the normal linear model case, we have ∂ηi/∂µi = 1
and Var(Yi) = σ2, so that wi = 1/σ2. It follows that V = X⊤X/σ2, as in Section 2.4.

For Fisher’s method of scoring, the mth approximation is given by

β(m) = β(m−1) +
{
V (m−1)

}−1 ∂ℓ

∂β

∣∣∣∣
β=β(m−1)

,

where V (m−1) is the Fisher information matrix evaluated at β = β(m−1). Multiplying both
sides of the above equation by V (m−1) gives

V (m−1)β(m) = V (m−1)β(m−1) +
∂ℓ

∂β

∣∣∣∣
β=β(m−1)

.

Now, the right-hand side of this equation is a vector with jth component

p∑
k=1

n∑
i=1

xijxik
Var(Yi)

(
∂µi

∂ηi

)2

β
(m−1)
k +

n∑
i=1

(yi − µi)xij
Var(Yi)

∂µi

∂ηi
,
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evaluated at β(m−1). Thus, we can write

V (m−1)β(m−1) +
∂ℓ

∂β

∣∣∣∣
β=β(m−1)

= X⊤Wz,

where the vector z has ith component

zi =

p∑
k=1

xikβ
(m−1)
k + (yi − µi)

∂ηi
∂µi

= {β(m−1)}⊤xi + (yi − µi)
∂ηi
∂µi

,

with µi and ∂ηi/∂µi evaluated at β(m−1). We call zi the working dependent variate for
the ith observation. Hence, the iterative equation for Fisher’s method of scoring can be
written as

X⊤WXβ(m) = X⊤Wz,

which is equivalent to
β(m) = (X⊤WX)−1X⊤Wz.

This has a similar form to the estimates for a normal linear model obtained by least squares,
except that the above equation has to be solved iteratively because z and W usually depend
on β. Note that, in the normal linear model case, we have zi = yi, so that the maximum
likelihood estimate of β is β̂ = (X⊤X)−1X⊤y, as in Section 2.4.

For generalised linear models, the maximum likelihood estimates are obtained by an
iteratively reweighted least squares procedure. It begins by using some initial approxi-
mation β(0) to evaluate z and W. Then the iterative equation is solved to give β(1), which,
in turn, is used to obtain better approximations for z and W, and so on until adequate
convergence is achieved. When the difference between successive approximations β(m) and
β(m−1) is sufficiently small, β(m) is taken as the maximum likelihood estimate β̂.

Example 3.5 Beetle data set.
A certain number of beetles (r) are exposed to various concentrations of gaseous carbon
disulphide, in milligrammes per litre, for five hours and the number of beetles killed (y) is
recorded. The dose (x) is the base 10 logarithm of the concentration. Below are the data.

x 1.6907 1.7242 1.7552 1.7842 1.8113 1.8369 1.8610 1.8839
r 59 60 62 56 63 59 62 60
y 6 13 18 28 52 53 61 60

Let Yi denote the number of beetles killed out of the ri exposed to dose xi. Then it is
assumed that Yi ∼ Bin(ri, πi) for i = 1, 2, . . . , 8, all independent, where

log

(
πi

1− πi

)
= β0 + β1xi.

Thus, we have µi = E(Yi) = riπi, Var(Yi) = riπi(1− πi) and

ηi = log

(
πi

1− πi

)
= log

(
µi

ri − µi

)
.

It follows that
∂ηi
∂µi

=
ri

µi(ri − µi)
=

1

riπi(1− πi)
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and wi = riπi(1 − πi). After four iterations of Fisher’s method of scoring, the maximum
likelihood estimates of β0 and β1 are β̂0 = −60.717 and β̂1 = 34.270, and their respective
standard errors are

√
v̂11 = 5.181 and

√
v̂22 = 2.912. Thus, the fitted logistic regression

model is

π̂i =
exp(−60.717 + 34.270xi)

1 + exp(−60.717 + 34.270xi)
.

Also, the value of the test statistic for testing H0 : β1 = 0 is

z =
β̂1√
v̂22

= 11.77.

Since the p-value is P < 0.001, there is overwhelming evidence that β1 ̸= 0.

3.4 Assessing the fit of a model

The adequacy of a model is defined relative to a maximal model, which has the same
number of parameters as observations.

The maximal model involves the parameter vector βmax = (β1, . . . , βn)
⊤. We compare

this with another model specified by the parameter vector β = (β1, . . . , βp)
⊤, where p < n.

A measure of goodness of fit is provided by the generalised likelihood ratio

Λ(y) =
L(β̂;y)

L(β̂max;y)
,

where β̂max is the maximum likelihood estimate of βmax. Small values of Λ(y) provide
evidence that the model with parameter vector β is a poor fit to the data. By Wilks’ theorem,
for large n, if this model is a good fit, then D = −2 log{Λ(Y)} ∼ χ2

n−p. Thus, the critical
region for a test with approximate significance level α is R = {y : −2 log{Λ(y)} > χ2

n−p,α}.
We call the statistic D the deviance.

In general, we may wish to compare a model with parameter vector β0 = (β1, . . . , βq)
⊤

with one with parameter vector β1 = (β1, . . . , βp)
⊤, where q < p < n. Let D0 and D1 denote

their respective deviances. Then, again by Wilks’ theorem, for large n, if both models fit the
data well, we have D0 ∼ χ2

n−q and D1 ∼ χ2
n−p, and it can be shown that D0 − D1 ∼ χ2

p−q.
If D0 −D1 is small, then we would choose the model with q parameters, since it is simpler.
However, ifD0−D1 is large, we would choose the one with p parameters. Note that, although
the χ2 approximation is not very accurate for the deviance, it is a much better approximation
for the difference in deviances.

Example 3.6 Beetle example revisited.
In this case, we are fitting a logistic regression model with p = 2 parameters and the
maximal model has n = 8 parameters. The data give D = 11.232. Since χ2

6,0.1 = 10.64
and χ2

6,0.05 = 12.59, the p-value is 0.05 < P < 0.1, and so there is weak evidence that the
logistic regression model does not fit the data particularly well. Note that the deviances for
the probit model and the extreme value model are D = 10.12 and D = 3.4464, respectively.
The latter model clearly provides the best description of the data.

Returning to the logistic regression model, suppose that we wish to compare a one-
parameter model with just an intercept, that is, the null model, with the two-parameter
one. Then we have q = 1, D0 = 284.202 and D1 = 11.232, so that D0−D1 = 272.970. Since
χ2
1,0.001 = 10.83, the p-value is P < 0.001, and so there is overwhelming evidence that the

two-parameter model provides a better description of the data than the null model.
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3.5 Inspecting and checking models

There are a number of different residuals that we can calculate in order to help us judge the
fit of a generalised linear model.

We define the Pearson residual by

ePi =
yi − µ̂i√
V (µ̂i)

,

where V (µ̂i) is the variance of Yi in terms of the fitted values µ̂i. Note that the sum of
squares of these residuals gives Pearson’s goodness-of-fit test statistic X2. A large value
of the Pearson residual means that observation is making a large contribution to X2. For
example, the Pearson residual for the Poisson distribution is

ePi =
yi − µ̂i√

µ̂i

,

whereas, for the binomial disribution, it is

ePi =
yi − µ̂i√

µ̂i(1− µ̂i/ri)
.

The Pearson residuals do not have unit variance.
We define the deviance residual by

eDi = sgn(yi − µ̂i)
√
di,

where di is the term in the deviance corresponding to the ith observation, and sgn(yi− µ̂i) =
+1 if yi > µ̂i, −1 if yi < µ̂i and 0 if yi = µ̂i. The deviance is the sum of squares of the
deviance residuals. For example, the deviance residual for the Poisson distribution is

eDi = sgn(yi − µ̂i)

[
2

{
yi log

(
yi
µ̂i

)
− yi + µ̂i

}] 1
2

,

whereas, for the binomial distribution, it is

eDi = sgn(yi − µ̂i)

[
2

{
yi log

(
yi
µ̂i

)
+ (ri − yi) log

(
ri − yi
ri − µ̂i

)}] 1
2

.

The distribution of the deviance residuals is skew and their variance is not one.
We define the Anscombe residual by

eAi =
A(yi)− A(µ̂i)

A′(µ̂i)
√
V (µ̂i)

,

where the transformation

A(x) =

∫
1

3
√
V (x)

dx

is chosen to make the distribution of the residuals as normal as possible. It follows that we
can check the distributional assumptions by ordering the Anscombe residuals and plotting
them against the expected normal quantiles. For example, the Anscombe residual for the
Poisson distribution is

eAi =
3(y

2
3
i − µ̂

2
3
i )

2µ̂
1
6
i

,

whereas, for the binomial distribution, it has a complicated expression.
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4 Binary Data

4.1 Modelling binary response probabilities

We now study in more detail generalised linear models in which the response variables are
measured on a binary scale.

Suppose that Yi ∼ Bin(ri, πi) for i = 1, 2, . . . , n, all independent, with

g(πi) = β⊤xi,

where g is the link function, β = (β1, . . . , βp)
⊤ and xi = (xi1, . . . , xip)

⊤. Let π = (π1, . . . , πn)
⊤.

Then the likelihood function is

L(π;y) =
n∏

i=1

(
ri
yi

)
πyi
i (1− πi)

ri−yi .

So the log-likelihood is

ℓ(π;y) =
n∑

i=1

log

(
ri
yi

)
+

n∑
i=1

yi log(πi) +
n∑

i=1

(ri − yi) log(1− πi).

Recall from Section 3.3 that the maximum likelihood estimates of β1, . . . , βp are obtained
using an iteratively reweighted least squares procedure.

4.2 Logistic regression

In Section 3.4, we introduced the deviance as a measure of goodness of fit of a model. We
now show how it can be calculated for a logistic regression model.

The deviance can be written as

D = −2{ℓ(π̂;y)− ℓ(π̂max;y)},

where π̂ is the maximum likelihood estimate of π in the model and π̂max is the corresponding
estimate in the maximal model. Now, we know that

π̂i = g−1
(
β̂⊤xi

)
,

where g−1 is the inverse of g. However, for the maximal model, we have

∂ℓ

∂πi
=
yi
πi

− ri − yi
1− πi

.

Setting this derivative to zero, we obtain

yi(1− π̂i,max)− (ri − yi)π̂i,max = 0,

which yields the maximum likelihood estimate π̂i,max = yi/ri. Hence, we have

ℓ(π̂max;y) =
n∑

i=1

log

(
ri
yi

)
+

n∑
i=1

yi log(π̂i,max) +
n∑

i=1

(ri − yi) log(1− π̂i,max).
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It follows that

D = −2
n∑

i=1

{
yi log

(
π̂i

π̂i,max

)
+ (ri − yi) log

(
1− π̂i

1− π̂i,max

)}
= 2

n∑
i=1

[
yi log

(
yi
riπ̂i

)
+ (ri − yi) log

{
ri − yi

ri(1− π̂i)

}]
.

Note that D =
∑n

i=1 di, where di is the contribution to the deviance from the ith observation,
since µ̂i = riπ̂i. By Wilks’ theorem, for large n, if the model is a good fit, then D ∼ χ2

n−p.

Example 4.1 Rat data set.
The effects of the dose of poison (x), in milligrammes, and the method of delivery (w) on the
probability of survival were examined in a study of rats. The two methods of delivery were
as a solid with food or as a liquid in water. For each combination of dose and method of
delivery, a certain number of rats (r) were used and the number who survived (y) is recorded.
Below are the data.

x 1.3 1.6 2.0 2.5 3.0 3.5 1.3 1.6 2.0 2.5 3.0 3.5
w 1 1 1 1 1 1 2 2 2 2 2 2
r 30 30 20 15 10 5 30 30 20 15 10 5
y 28 23 11 5 2 0 29 25 14 8 3 1

Let Yjk denote the number of rats who survived out of the rjk exposed to dose xk and
method of delivery j. Then it is initially assumed that Yjk ∼ Bin(rjk, πjk) for j = 1, 2 and
k = 1, 2, . . . , 6, all independent, where

log

(
πjk

1− πjk

)
= αj + βjxk.

Thus, we are allowing a different intercept and slope for each method of delivery. In terms
of our notation in Section 4.1, we have x1k = (1, 0, xk, 0)

⊤, x2k = (0, 1, 0, xk)
⊤ and β =

(α1, α2, β1, β2)
⊤. So we are fitting a logistic regression model with p = 4 parameters. On the

other hand, the maximal model has n = 12 parameters. The data give D = 3.7217. Since
χ2
8,0.1 = 13.36, the p-value is P > 0.1, and so there is no evidence that this model does not

fit the data well.
Next, we assume that the slope is the same for the two methods of delivery, so that

log

(
πjk

1− πjk

)
= αj + βxk.

This means that the regression lines are parallel. Again, in terms of our notation in Section
4.1, we have x1k = (1, 0, xk)

⊤, x2k = (0, 1, xk)
⊤ and β = (α1, α2, β)

⊤. So we are fitting a
three-parameter model. The data give D = 4.1682. Thus, the difference in the deviances is
0.4465 on one degree of freedom. Clearly, the p-value is P > 0.1, and so there is no evidence
that the regression lines are not parallel, that is, that β1 ̸= β2.

Finally, we assume that both the intercept and the slope are the same for the two methods
of delivery, so that

log

(
πjk

1− πjk

)
= α + βxk.

This means that there is no difference between the methods of delivery. Again, in terms of
our notation in Section 4.1, we have xk = (1, xk)

⊤ and β = (α, β)⊤. So we are fitting a
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two-parameter model. The data give D = 7.7833. Thus, the difference in the deviances for
this model and the previous one is 3.6151 on one degree of freedom. Since χ2

1,0.1 = 2.71 and
χ2
1,0.05 = 3.84, the p-value is 0.05 < P < 0.1, and so there is weak evidence of a difference

between the two methods of delivery, that is, that α1 ̸= α2.
On the basis of the above, we choose the second model. After four iterations of Fisher’s

method of scoring, the maximum likelihood estimates of α1, α2 and β are α̂1 = 4.737, α̂2 =
5.400 and β̂ = −2.148, and their respective standard errors are

√
v̂11 = 0.651,

√
v̂22 = 0.353

and
√
v̂33 = 0.312. Thus, the fitted logistic regression model is

π̂1k =
exp(4.737− 2.148xk)

1 + exp(4.737− 2.148xk)

for those rats given the poison in food and

π̂2k =
exp(5.400− 2.148xk)

1 + exp(5.400− 2.148xk)

for those given the poison in water. We can also find approximate confidence intervals for
the different parameters. For example, an approximate 95% confidence interval for β is

β̂ ± 1.96×
√
v̂33 = −2.148± 1.96× 0.312 = −2.148± 0.612

or (−2.760,−1.536).

4.3 Pearson’s goodness-of-fit test statistic

There is an alternative measure of goodness of fit which is asymptotically equivalent to the
deviance.

Pearson’s goodness-of-fit test statistic is defined by

X2 =
n∑

i=1

(yi − µ̂i)
2

V (µ̂i)
,

where µ̂i = riπ̂i and V (µ̂i) = µ̂i(1− µ̂i/ri). It follows that

X2 =
n∑

i=1

(yi − riπ̂i)
2

riπ̂i(1− π̂i)

=
n∑

i=1

(yi − riπ̂i)
2

riπ̂i
+

n∑
i=1

{ri − yi − ri(1− π̂i)}2

ri(1− π̂i)
.

Thus, the test statistic has the form

X2 =
∑ (o− e)2

e
,

where o denotes the observed frequencies yi and ri−yi, e denotes the corresponding estimated
expected frequencies riπ̂i and ri(1− π̂i), and the sum is over all cells in a 2× n table.

Now consider the deviance. Then we know that

D = 2
n∑

i=1

[
yi log

(
yi
riπ̂i

)
+ (ri − yi) log

{
ri − yi

ri(1− π̂i)

}]
.
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So this statistic has the form

D = 2
∑

o log
(o
e

)
.

To see why the two statistics are asymptotically equivalent, we can use the Taylor series
expansion of f(u) = u log(u/v) about the point u = v. We obtain

f(u) = f(v) + (u− v)f ′(v) +
(u− v)2

2
f ′′(v) + . . .

= v log 1 + (u− v)
{
1 + log

(u
v

)}∣∣∣
u=v

+
(u− v)2

2

(
1

u

)∣∣∣∣
u=v

+ . . .

= u− v +
(u− v)2

2v
+ . . . .

Thus, the deviance can be written as

D = 2
∑{

o− e+
(o− e)2

2e
+ . . .

}
≃

∑ (o− e)2

e
= X2,

since
∑
o =

∑
e. Consequently, for large n, if the model is a good fit, then X2 ∼ χ2

n−p. The
χ2 approximation is often better for X2 than D because the latter is unduly influenced by
very small frequencies.

Example 4.2 Rat example revisited.
For the three logistic regression models that we fitted, the values of D were 3.7217, 4.1682
and 7.7833. In comparison, the values of X2 are 3.3172, 3.7374 and 7.3369, which are quite
similar. The conclusions about the individual models are the same as before.

4.4 Overdispersion

In some cases, there may be greater variability in the data than would be expected under
the assumed model. This phenomenon is called overdispersion.

One approach is to assume that Var(Yi) = ψV (µi), where ψ > 0 is an unknown dispersion
parameter. Although maximum likelihood estimation could be employed to estimate ψ, it
is more common to use the estimate

ψ̂ =
1

n− p

n∑
i=1

(yi − µ̂i)
2

V (µ̂i)
.

Note that ψ̂ has a similar form to s2 in Section 2.4. The above estimate is much simpler to
compute, and, in some cases, offers greater numerical stability than the maximum likelihood
estimate.

21



5 Count Data

5.1 Poisson regression

This chapter is concerned with the analysis of data in which the response and explanatory
variables are all categorical.

Suppose that Yi ∼ Poisson(µi) for i = 1, 2, . . . , n, all independent, with

g(µi) = βTxi,

where g is the link function, β = (β1, . . . , βp)
⊤ and xi = (xi1, . . . , xip)

⊤. Let µ = (µ1, . . . , µn)
⊤.

Then the likelihood function is

L(µ;y) =
n∏

i=1

µyi
i e

−µi

yi!
.

So the log-likelihood is

ℓ(µ;y) =
n∑

i=1

yi log(µi)−
n∑

i=1

µi −
n∑

i=1

log(yi!).

The maximum likelihood estimates of β1, . . . , βp are obtained using the iteratively reweighted
least squares procedure in Section 3.3.

The deviance can be written as

D = −2{ℓ(µ̂;y)− ℓ(µ̂max;y)},

where µ̂ is the maximum likelihood estimate of µ in the model and µ̂max is the corresponding
estimate in the maximal model. Now, we know that

µ̂i = g−1
(
β̂⊤xi

)
,

where g−1 is the inverse of g. However, for the maximal model, we have

∂ℓ

∂µi

=
yi
µi

− 1.

Setting this derivative to zero yields the maximum likelihood estimate µ̂i,max = yi. Hence,
we have

ℓ(µ̂max;y) =
n∑

i=1

yi log(µ̂i,max)−
n∑

i=1

µ̂i,max −
n∑

i=1

log(yi!).

It follows that

D = −2
n∑

i=1

{
yi log

(
µ̂i

µ̂i,max

)
− µ̂i + µ̂i,max

}
= 2

n∑
i=1

{
yi log

(
yi
µ̂i

)
− yi + µ̂i

}
.

Note that D =
∑n

i=1 di, where di is the contribution to the deviance from the ith observation.
By Wilks’ theorem, for large n, if the model is a good fit, then D ∼ χ2

n−p.
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Example 5.1 Count data set.
The data below are counts (y) observed at various values of a covariate (x).

y 2 3 6 7 8 9 10 12 15
x -1 -1 0 0 0 0 1 1 1

Let Yi denote the count for covariate xi. Then it is assumed that Yi ∼ Poisson(µi) for
i = 1, 2, . . . , 9, all independent, where

log(µi) = β0 + β1xi.

Thus, we have Var(Yi) = µi and ηi = log(µi). It follows that ∂ηi/∂µi = 1/µi and wi = µi.
After four iterations of Fisher’s method of scoring, the maximum likelihood estimates of β0
and β1 are β̂0 = 1.889 and β̂1 = 0.670, and their respective standard errors are

√
v̂11 = 0.142

and
√
v̂22 = 0.179. Thus, the fitted Poisson regression model is

µ̂i = e1.889+0.670xi .

In this case, we are fitting a model with p = 2 parameters and the maximal model has n = 9
parameters. The data give D = 2.9387. Since χ2

7,0.1 = 12.02, the p-value is P > 0.1, and so
there is no evidence that this model does not fit the data well.

5.2 Models for contingency tables

Data often consist of counts or frequencies in the cells of a contingency table formed by
the cross-classification of response and explanatory variables.

Consider a two-dimensional table in which variable A has J categories and variable B
has K categories. Let Yjk denote the frequency in cell (j, k), and let Yj. =

∑K
k=1 Yjk and

Y.k =
∑J

j=1 Yjk denote the row and column totals. Then we have a table as follows:

B1 B2 · · · BK Total
A1 Y11 Y12 · · · Y1K Y1.
A2 Y21 Y22 · · · Y2K Y2.
...

...
...

...
...

AJ YJ1 YJ2 · · · YJK YJ.
Total Y.1 Y.2 · · · Y.K Y..

Note that the overall total is N = Y.. =
∑J

j=1

∑K
k=1 Yjk.

The simplest model is obtained by assuming that Yjk ∼ Poisson(µjk) for j = 1, 2, . . . , J
and k = 1, 2, . . . , K, all independent. In this case, the joint probability mass function of the
Y s is

P (Y = y) =
J∏

j=1

K∏
k=1

P (Yjk = yjk)

=
J∏

j=1

K∏
k=1

µ
yjk
jk e

−µjk

yjk!
,

where y = (y11, . . . , yJK)
⊤.
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In practice, there are usually constraints on the Y s, such as that the overall total N
is fixed. Now, we know that N ∼ Poisson(µ..), where µ.. =

∑J
j=1

∑K
k=1 µjk. Thus, the

probability mass function of N is

P (N = n) =
µn
..e

−µ..

n!
.

It follows that the joint probability mass function of the Y s conditional on N = n is

P (Y = y|N = n) =
P (Y = y, N = n)

P (N = n)

=
P (Y = y)

P (N = n)

=
J∏

j=1

K∏
k=1

µ
yjk
jk e

−µjk

yjk!

n!

µn
..e

−µ..

= n!
J∏

j=1

K∏
k=1

(
µjk

µ..

)yjk 1

yjk!
.

Let θjk = µjk/µ... Then we have

P (Y = y|N = n) = n!
J∏

j=1

K∏
k=1

θ
yjk
jk

yjk!
,

where 0 ≤ θjk ≤ 1 and
∑J

j=1

∑K
k=1 θjk = 1. This is a multinomial distribution. The

quantity θjk is the probability that an individual is in cell (j, k).
Another possibility is that the row totals are fixed. Here, the joint probability mass func-

tion of the Y s for each row is multinomial and it is assumed that the rows are independent.
Thus, the joint probability mass function of the Y s conditional on Yj. = yj. for j = 1, 2, . . . , J
is

P (Y = y|Yj. = yj., j = 1, 2, . . . , J) =
J∏

j=1

yj.!
K∏
k=1

θ
yjk
jk

yjk!
,

where θjk = µjk/µj. and
∑K

k=1 θjk = 1 for each j. This is called a product multinomial
distribution.

5.3 Log-linear models

For contingency tables, the usual hypotheses can all be formulated as multiplicative models
for the expected cell frequencies. This suggests that the logarithm is the natural link function
between the expected cell frequencies and a linear combination of the parameters.

First, consider the multinomial distribution. Then, if the row and column variables are
independent, we have θjk = θj.θ.k, where θj. and θ.k represent the respective probabilities

that an individual is in row j and column k, and
∑J

j=1 θj. =
∑K

k=1 θ.k = 1. It follows that,
under the independence hypothesis, the expected frequency for cell (j, k) is

E(Yjk|N = n) = nθj.θ.k.

Thus, we can write

ηjk = log{E(Yjk|N = n)} = log n+ log(θj.) + log(θ.k)

= µ+ αj + βk,

24



where µ is the overall effect, αj is the effect of row j and βk is the effect of column k. This is
an example of a log-linear model. The corresponding maximal model E(Yjk|N = n) = nθjk
can be written as

ηjk = log{E(Yjk|N = n)} = µ+ αj + βk + γjk,

where γjk is the interaction effect of row j and column k. So the independence hypothesis
θjk = θj.θ.k for all j and k is equivalent to the no interaction hypothesis γjk = 0 for all j
and k. Note that, if γjk is included in the model, then the lower-order terms αj and βk are
also included. We say that the models are hierarchical.

Now, for the first log-linear model, the constraints
∑J

j=1 θj. =
∑K

k=1 θ.k = 1 imply a
set of nonlinear constraints on the parameters αj and βk. This means that the model is
overparametrised, that is, there are more parameters than are really needed. To avoid
complications due to the presence of nonlinear constraints, we choose the parametrisation

µ = log n+
1

J

J∑
j=1

log(θj.) +
1

K

K∑
k=1

log(θ.k),

αj = log(θj.)−
1

J

J∑
j=1

log(θj.)

and

βj = log(θ.k)−
1

K

K∑
k=1

log(θ.k),

so that there are two linear constraints
∑J

j=1 αj = 0 and
∑K

k=1 βk = 0. Alternatively, we can
take α1 = 0 and β1 = 0, which means that the first level of each variable is the reference level.
This is the parametrisation used by R. In either case, the model has J +K − 1 parameters.
Neither the fitted values nor the deviance are affected by the choice of parametrisation.

Similarly, for the maximal model, there are the additional constraints
∑J

j=1 γjk = 0 and∑K
k=1 γjk = 0. Alternatively, we can take γ1k = 0 and γj1 = 0, which is the parametrisation

used by R. In either case, the model has

1 + (J − 1) + (K − 1) + (J − 1)(K − 1) = JK

parameters, which is the number of observations.
Next, consider the product multinomial distribution with fixed row totals yj.. Then, if

the cell probabilities are the same in each row, we have θjk = θ.k for all j. It follows that,
under the homogeneity hypothesis, the expected frequency for cell (j, k) is

E(Yjk|Yj. = yj.) = yj.θ.k,

where
∑K

k=1 θ.k = 1. Thus, we can write

ηjk = log{E(Yjk|Yj. = yj.)} = log(yj.) + log(θ.k)

= µ+ αj + βk.

So we have a log-linear model. The corresponding maximal model E(Yjk|Yj. = yj.) = yj.θjk
can be written as

ηjk = log{E(Yjk|Yj. = yj.)} = µ+ αj + βk + γjk.
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So the homogeneity hypothesis θjk = θ.k for all j and k is equivalent to the no interaction
hypothesis γjk = 0 for all j and k. For both log-linear models, there are the same constraints
as before.

For the multinomial and product multinomial distributions, certain quantities are fixed
and all terms relating to these must always be included in the model. Consequently, in each
case, there is a minimal model, which has the minimum number of terms. Since the overall
total N is fixed for the multinomial distribution, we must include µ in the model. On the
other hand, the row totals Yj. are fixed for the product multinomial distribution, and so we
must include µ + αj. By Birch’s conditions, the maximum likelihood estimates are the
same for both models.

5.4 Fitting the models

We now show how to fit a log-linear model using maximum likelihood estimation when the
overall total N is fixed.

Let θ = (θ11, . . . , θJK)
⊤. Then the likelihood is

L(θ;y) = n!
J∏

j=1

K∏
k=1

θ
yjk
jk

yjk!
.

So the log-likelihood is

ℓ(θ;y) = log(n!) +
J∑

j=1

K∑
k=1

yjk log(θjk)−
J∑

j=1

K∑
k=1

log(yjk!).

For the maximal model, the maximum likelihood estimates are obtained by maximising the
log-likelihood subject to the constraint

∑J
j=1

∑K
k=1 θjk = 1. This can be achieved using a

Lagrange multiplier ξ, that is, finding θjk and ξ to maximise

t(θ, ξ;y) = log(n!) +
J∑

j=1

K∑
k=1

yjk log(θjk)−
J∑

j=1

K∑
k=1

log(yjk!)− ξ

(
J∑

j=1

K∑
k=1

θjk − 1

)
.

Thus, we have
∂t

∂θjk
=
yjk
θjk

− ξ

and
∂t

∂ξ
= 1−

J∑
j=1

K∑
k=1

θjk.

Setting these derivatives to zero yields the maximum likelihood estimates θ̂jk,max = yjk/n

and ξ̂ = n. Under the independence hypothesis θjk = θj.θ.k for all j and k, the log-likelihood
is

ℓ(θ;y) = log(n!) +
J∑

j=1

yj. log(θj.) +
K∑
k=1

y.k log(θ.k)−
J∑

j=1

K∑
k=1

log(yjk!).

This time, the maximum likelihood estimates are obtained by maximising the log-likelihood
subject to the constraints

∑J
j=1 θj. =

∑K
k=1 θ.k = 1. Using Lagrange multipliers ξ1 and ξ2,
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we find θj., θ.k, ξ1 and ξ2 to maximise

t(θ, ξ1, ξ2;y) = log(n!) +
J∑

j=1

yj. log(θj.) +
K∑
k=1

y.k log(θ.k)−
J∑

j=1

K∑
k=1

log(yjk!)

−ξ1

(
J∑

j=1

θj. − 1

)
− ξ2

(
K∑
k=1

θ.k − 1

)
.

Thus, we have
∂t

∂θj.
=
yj.
θj.

− ξ1,
∂t

∂θ.k
=
y.k
θ.k

− ξ2,

∂t

∂ξ1
= 1−

J∑
j=1

θj.

and
∂t

∂ξ2
= 1−

K∑
k=1

θ.k.

Setting these derivatives to zero yields the maximum likelihood estimates θ̂j. = yj./n, θ̂.k =

y.k/n and ξ̂1 = ξ̂2 = n. It follows that, under the independence hypothesis, the expected
frequency for cell (j, k) is

ejk = nθ̂j.θ̂.k =
yj.y.k
n

.

By substituting the estimates θ̂j. and θ̂.k into the equations for µ, αj and βk in Section 5.3,

we obtain µ̂, α̂j and β̂k.
The deviance is

D = −2{ℓ(θ̂;y)− ℓ(θ̂max;y)}

= −2
J∑

j=1

K∑
k=1

yjk log

(
θ̂jk

θ̂jk,max

)

= 2
J∑

j=1

K∑
k=1

yjk log

(
yjk
ejk

)
.

By Wilks’ theorem, for large n, if the model is a good fit, then D ∼ χ2
(J−1)(K−1). Pearson’s

goodness-of-fit test statistic is

X2 =
J∑

j=1

K∑
k=1

(yjk − ejk)
2

ejk
.

By the argument used in Section 4.3, the two statistics are asymptotically equivalent. Con-
sequently, for large n, if the model is a good fit, then X2 ∼ χ2

(J−1)(K−1). Note that X2 is
more commonly used for contingency table data than D.

Example 5.2 Cancer data set.
In a cross-sectional study of bone cancer, the type of cancer and the site were recorded
for 300 patients. The contingency table below shows the number of patients (y) with each
combination of type of cancer and site.
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Site
Type Head Arms Body Legs Total
I 21 13 42 8 84
II 10 26 20 35 91
III 30 34 32 29 125

Total 61 73 94 72 300

The null hypothesis is that type of cancer and site are independent. Let Yjk denote the
number of patients classified in row j and column k. Then it is assumed that the Yjk have
a multinomial distribution with parameters n and θjk for j = 1, 2, 3 and k = 1, 2, 3, 4, where
n = 300 and θjk is the probability that a patient is classified in row j and column k. The
data give D = 38.869. Since χ2

6,0.001 = 22.46, the p-value is P < 0.001, and so there is
very strong evidence that type of cancer is not independent of site. In comparison, we have
X2 = 37.928, which leads to the same conclusion.
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6 Survival Data

6.1 Survivor and hazard functions

In many applications, we are interested in the study of the lifetimes of individuals, such as
components in engineering and patients in medicine.

Suppose that the length of the life T > 0 of an individual has probability density function
f(t) and distribution function F (t). Then the survivor function is defined by

S(t) = P (T > t) = 1− F (t).

The hazard function is the conditional probability density function of T given survival up
to time t. It is given by

h(t) = lim
∆t→0

P (t < T ≤ t+∆t|T > t)

∆t

= lim
∆t→0

P (t < T ≤ t+∆t)

∆t

1

P (T > t)

=
f(t)

1− F (t)

=
f(t)

S(t)
.

The function defined by

H(t) =

∫ t

0

h(u)du

is called the integrated hazard function. Now, we can write

h(t) = − d

dt
log{S(t)}.

Since S(0) = 1, it follows that
S(t) = exp{−H(t)}

and
f(t) = h(t) exp{−H(t)}.

So we can find the probability density function or the survivor function given the hazard
function. In fact, we can find the other two functions from any one, that is, each is an
equivalent representation of the lifetime distribution.

Example 6.1 Exponential distribution.
Suppose that T ∼ Exp(λ). Then we have

S(t) =

∫ ∞

t

λe−λudu = e−λt

and

h(t) =
λe−λt

e−λt
= λ.

Thus, we see that the exponential distribution has a constant hazard function. This is often
not a realistic assumption in practice because it represents a situation where there is no
aging. The probability of an individual dying in a time interval (t0, t0 + t] does not depend
on the starting point t0.
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6.2 Exponential regression

For survival data, explanatory variables are usually taken account of by fitting a model to
the hazard function.

Suppose that Ti ∼ Exp(λi) for i = 1, 2, . . . , n, all independent, with

g(λi) = β⊤xi,

where g is the link function, β = (β1, . . . , βp)
⊤ and xi = (xi1, . . . , xip)

⊤. Let λ = (λ1, . . . , λn)
⊤.

Then the likelihood is

L(λ; t) =
n∏

i=1

λie
−λiti ,

where t = (t1, . . . , tn)
⊤. So the log-likelihood is

ℓ(λ; t) =
n∑

i=1

log(λi)−
n∑

i=1

λiti.

The maximum likelihood estimates of β1, . . . , βp are again obtained using the iteratively
reweighted least squares procedure in Section 3.3.

The deviance can be written as

D = −2{ℓ(λ̂; t)− ℓ(λ̂max; t)},

where λ̂ is the maximum likelihood estimate of λ in the model and λ̂max is the corresponding
estimate in the maximal model. Now, we know that

λ̂i = g−1
(
β̂⊤xi

)
,

where g−1 is the inverse of g. However, for the maximal model, we have

∂ℓ

∂λi
=

1

λi
− ti.

Setting this derivative to zero yields the maximum likelihood estimate λ̂i,max = 1/ti. Hence,
we have

ℓ(λ̂max; t) =
n∑

i=1

log(λ̂i,max)− n.

It follows that

D = −2
n∑

i=1

{
log

(
λ̂i

λ̂i,max

)
− λ̂iti + n

}

= 2
n∑

i=1

{− log(λ̂iti)− n+ λ̂iti}.

Note that D =
∑n

i=1 di, where di is the contribution to the deviance from the ith observation.
By Wilks’ theorem, for large n, if the model is a good fit, then D ∼ χ2

n−p.
We can check whether the survival times have an exponential distribution. Recall that

λiTi ∼ Exp(1) for i = 1, 2, . . . , n, all independent. Let Vi = λ̂iTi. Then the Vi have an
approximate standard exponential distribution, although they are not independent. Now,
the survivor function of this distribution is S(v) = e−v. A probability plot can be formed
by plotting the empirical survivor function Ŝ(v) of the vi against e−v. In fact, plotting
− log{Ŝ(v)} against v or log[− log{Ŝ(v)}] against log v is advisable, as the nature of the
departure from exponentiality may show up.
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6.3 Censoring

A survival time is censored if the exact time is not known, such as when the event of
interest has not occurred yet. This event could be the failure of a component or the death
of a patient.

Censoring might occur in practice because a patient withdraws from the study or a patient
is lost to follow-up during the study period. When censoring has occurred, the likelihood
changes. Suppose that, for individual i, we have the data (ti, δi), where δi = 1 if Ti = ti and
δi = 0 if Ti > ti. We call δi the censoring variable, since it indicates whether the survival
time is uncensored or not. It follows that the likelihood is

L(λ; t) =
n∏

i=1

{f(ti)}δi{S(ti)}1−δi

=
n∏

i=1

{
f(ti)

S(ti)

}δi

S(ti)

=
n∏

i=1

{h(ti)}δiS(ti)

=
n∏

i=1

λδii e
−λiti .

Thus, the log-likelihood is

ℓ(λ; t) =
n∑

i=1

δi log(λi)−
n∑

i=1

λiti.

Similar calculations to those in Section 6.2 lead to an expression for the deviance in this case
and Wilks’ theorem can also be applied.
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