Actuarial Mathematics II _____MTH5125

Assessment 2 - setting for the excel file Dr. Melania Nica

Spring Term

Model

Let
$$\mu_x^{01}=10^{-5}$$
 and $\mu_x^{02}=A+Bc^x$ for all x where $A=5\times 10^{-4}$, $B=7.4\times 10^{-5}$ and $c=1.05$.

Let $\tau=\max{(5, \text{ the last digit of your student number })}$. For example if your student number is 210473646 then $\tau=6$.

Calculate:

- (i) $_{\tau}p_{35}^{00}$ [15 marks]
- (ii) $_{\tau}p_{35}^{02}$ [15 marks]
- $(iii)_{\tau} p_{35}^{01}$ [10 marks]

- 4日 b 4 周 b 4 目 b 4 日 b - 4

(a)-(i)

$$\begin{split} \tau \rho_{35}^{00} &= & \exp\left(-\int_{0}^{\tau} \left(\mu_{30+t}^{01} + \mu_{30+t}^{02}\right) dt\right) \\ &= & \exp\left(-\int_{0}^{\tau} \left(10^{-5} + A + Bc^{x}\right) dt\right) \\ &= & \exp\left(-10^{-5} \left(\tau - 0\right) - \int_{0}^{\tau} \left(A + Bc^{35+t}\right) dt\right) \\ &= & \exp\left(-10^{-5} \tau\right) \exp\left(-A\tau\right) \exp \\ &= & \exp\left(-10^{-5} \tau\right) s^{\tau} g^{c^{35} (c^{\tau} - 1)} \end{split}$$

where $s = \exp(-A)$, $g = \exp(-B/\log c)$

40 + 40 + 40 + 40 + 40 +

$$_{\tau}p_{35}^{02} = \int_{0}^{\tau} _{\tau}p_{35}^{00}\mu_{35+t}^{02}dt = \int_{0}^{\tau} _{\tau}p_{35}^{00} \left(A + Bc^{35+t}\right)dt$$

(a)-(iii)

$$_{ au}p_{30}^{01}=1-_{ au}p_{30}^{00}-_{ au}p_{30}^{02}$$

4 D > 4 A > 4 B > 4 B > B 9 Q (

An insurance company uses the model above to calculate premiums for a special τ -year term life insurance policy. The basic sum insured is \$100,000, but the death benefit is \$150,000 if death occurs as a result of an accident. The death benefit is payable immediately on death. Premiums are payable continuously throughout the term. The effective rate of interest is 3% per year and there are no expenses. The policy is issued to a life aged 35.

- (i) calculate the annual premium for this policy [20 marks]
- (ii) calculate the policy value at time 1, 2, τ 2, τ 1 and τ in state 0 [25 marks]
- (iii) comment on the results at (ii) [15 marks]

4 D > 4 A > 4 B > 4 B > B = 900

(b) -(i) The EPV for the premium P per year payable continuously is:

$$P\bar{a}_{35:\overline{7}|}^{00} = P\int\limits_{0}^{ au} v^{t} \ _{t}p_{35}^{00}dt$$

The EPV of the death benefit is:

$$150,000\overline{A}_{35:\overline{\tau}|}^{01} + 100,000\overline{A}_{35:\overline{\tau}|}^{02}$$

$$= 150,000\int_{0}^{\tau} v^{t} _{t} \rho_{30}^{00} \mu_{30+t}^{01} dt + 100,000\int_{0}^{\tau} v^{t} _{t} \rho_{30}^{00} \mu_{30+t}^{02} dt$$

4 D > 4 B > 4 B > 4 B > 4 D >

$$P = \frac{150,000\overline{A}_{35:\overline{7}|}^{01} + 100,000\overline{A}_{35:\overline{7}|}^{02}}{\overline{a}_{35:\overline{7}|}^{00}}$$

The integrals are evaluated using numerical integration.

The policy value at time 5 in state 0 is given by:

$$_{1}V^{0} = 100,000\overline{A}_{36:\overline{\tau-1}|}^{02} + 150,000\overline{A}_{36:\overline{\tau-1}|}^{01} - P\overline{a}_{36:\overline{\tau-1}|}^{00}$$

 $_{2}V^{0} = 100,000\overline{A}_{37:\overline{\tau-2}|}^{02} + 150,000\overline{A}_{37:\overline{\tau-2}|}^{01} - P\overline{a}_{37:\overline{\tau-2}|}^{00}$

$$_{ au-2}V^0=100$$
, $000\overline{A}_{35+ au-2:\overline{2}|}^{02}+150$, $000\overline{A}_{35+ au-2:\overline{2}|}^{01}-P\overline{a}_{35+ au-2:\overline{2}|}^{00}$

$$_{ au-1}V^0=100$$
, $000\overline{A}_{35+ au-1:\overline{1}|}^{02}+150$, $000\overline{A}_{35+ au-1:\overline{1}|}^{01}-P\overline{a}_{35+ au-1:\overline{1}|}^{00}$

$$_{\tau}V^{0}=0$$