Actuarial Mathematics II MTH5125

Assessment 2 - setting for the excel file Dr. Melania Nica

Spring Term

Model

Let $\mu_{x}^{01}=10^{-5}$ and $\mu_{x}^{02}=A+B c^{x}$ for all x where $A=5 \times 10^{-4}, B=7.4 \times 10^{-5}$ and $c=1.05$.

Let $\tau=\max (5$, the last digit of your student number $)$. For example if your student number is 210473646 then $\tau=6$.

Calculate:
(i) ${ }_{\tau} p_{35}^{00}$ [15 marks]
(ii) τp_{35}^{02} [15 marks]
(iii) ${ }_{\tau} p_{35}^{01} \quad$ [10 marks]
(a)-(i)

$$
\begin{aligned}
{ }_{\tau} p_{35}^{00} & =\exp \left(-\int_{0}^{\tau}\left(\mu_{30+t}^{01}+\mu_{30+t}^{02}\right) d t\right) \\
& =\exp \left(-\int_{0}^{\tau}\left(10^{-5}+A+B c^{x}\right) d t\right) \\
& =\exp \left(-10^{-5}(\tau-0)-\int_{0}^{\tau}\left(A+B c^{35+t}\right) d t\right) \\
& =\exp \left(-10^{-5} \tau\right) \exp (-A \tau) \exp \\
& =\exp \left(-10^{-5} \tau\right) s^{\tau} g^{c^{35}\left(c^{\tau}-1\right)}
\end{aligned}
$$

where $s=\exp (-A), g=\exp (-B / \log c)$
(a)-(ii)

$$
\tau p_{35}^{02}=\int_{0}^{\tau} \tau p_{35}^{00} \mu_{35+t}^{02} d t=\int_{0}^{\tau}{ }_{\tau} p_{35}^{00}\left(A+B c^{35+t}\right) d t
$$

(a)-(iii)

$$
{ }_{\tau} p_{30}^{01}=1-{ }_{\tau} p_{30}^{00}-{ }_{\tau} p_{30}^{02}
$$

An insurance company uses the model above to calculate premiums for a special τ-year term life insurance policy. The basic sum insured is $\$ 100,000$, but the death benefit is $\$ 150,000$ if death occurs as a result of an accident. The death benefit is payable immediately on death. Premiums are payable continuously throughout the term. The effective rate of interest is 3% per year and there are no expenses. The policy is issued to a life aged 35 .
(i) calculate the annual premium for this policy [20 marks]
(ii) calculate the policy value at time $1,2, \tau-2, \tau-1$ and τ in state 0 [25 marks]
(iii) comment on the results at (ii) [15 marks]
(b) -(i) The EPV for the premium P per year payable continuously is:

$$
P \bar{a}_{35: \bar{\tau}}^{00}=P \int_{0}^{\tau} v^{t}{ }_{t} p_{35}^{00} d t
$$

The EPV of the death benefit is:

$$
\begin{aligned}
& 150,000 \bar{A}_{35: \bar{\tau}}^{01}+100,000 \bar{A}_{35: \tau}^{02} \\
= & 150,000 \int_{0}^{\tau} v^{t}{ }_{t}{ }^{0} p_{30}^{00} \mu_{30+t}^{01} d t+100,000 \int_{0}^{\tau} v^{t}{ }_{t} p_{30}^{00} \mu_{30+t}^{02} d t
\end{aligned}
$$

$$
P=\frac{150,000 \bar{A}_{35: \bar{\tau}}^{01}+100,000 \bar{A}_{35: \bar{\tau}}^{02}}{\bar{a}_{35: \bar{\tau}}^{00}}
$$

The integrals are evaluated using numerical integration.

The policy value at time 5 in state 0 is given by:

$$
\begin{gathered}
{ }_{1} V^{0}=100,000 \bar{A}_{36: \overline{\tau-1}}^{02}+150,000 \bar{A}_{36: \overline{\tau-1}}^{01}-P \bar{a}_{36: \overline{\tau-1}}^{00} \\
{ }_{2} V^{0}=100,000 \bar{A}_{37: \overline{\tau-2}}^{02}+150,000 \bar{A}_{37: \overline{\tau-2}}^{01}-P \bar{a}_{37: \overline{\tau-2}}^{00} \\
{ }_{\tau-2} V^{0}=100,000 \bar{A}_{35+\tau-2: 2 \mid}^{02}+150,000 \bar{A}_{35+\tau-2: 2 \mid}^{01}-P \bar{a}_{35+\tau-2: 2 \mid}^{00} \\
{ }_{\tau-1} V^{0}=100,000 \bar{A}_{35+\tau-1: 1}^{02}+150,000 \bar{A}_{35+\tau-1: 1}^{01}-P \bar{a}_{35+\tau-1: 1}^{00} \\
{ }_{\tau} V^{0}=0
\end{gathered}
$$

