Actuarial Mathematics II MTH5125

Practice Set: Multiple States Dr. Melania Nica

Spring Term

Exercises

8.1 You are given the following transition intensities for the permanent disability model for $0 \leq t \leq 5$
$\mu_{x+t}^{01}=0.02, \mu_{x+t}^{02}=0.03, \mu_{x+t}^{12}=0.04$
a) Calculate the probability that a healthy life aged x is still health at age $x+5$

$$
\begin{aligned}
{ }_{t} p_{x}^{\overline{00}} & =\exp \left(-\int_{0}^{t}\left(\mu_{x+r}^{01}+\mu_{x+r}^{02}\right) d r\right) \\
& =\exp \left(-\int_{0}^{t}(0.02+0.03) d r\right) \\
& =\exp (-0.05 t) \\
& 5 p_{x}^{\overline{00}}=\exp (-0.25)=0.7788
\end{aligned}
$$

b) Calculate the probability that a healthy life aged x is still healthy a age $x+5$ given that (x) survives to age $x+5$

We need to calculate the probability that (x) is in State 0 at time 5 , given that (x) is either in state 0 or State 1 at time 5 , hence a conditional probability:

$$
\frac{5 p_{x}^{\overline{00}}}{{ }_{5} p_{x}^{\overline{00}}+{ }_{5} p_{x}^{01}}
$$

Now,

$$
\begin{aligned}
{ }_{5} p_{x}^{01} & =\int_{0}^{5} r p_{x}^{\overline{00}} \mu_{x+r}^{01}{ }_{5-r} p_{x+r}^{\overline{11}} d r \\
{ }_{5-r} p_{x+r}^{\overline{11}} & =\exp \left(-\int_{0}^{5-r} \mu_{x+r+s}^{12} d s\right) \\
& =\exp (-0.04(5-r))
\end{aligned}
$$

Hence,

$$
\begin{aligned}
{ }_{5} p_{x}^{01} & =\int_{0}^{5} e^{-0.05 r} \times 0.02 \times e^{-0.04(5-r)} d r \\
& =0.02 \times e^{-0.2} \int_{0}^{5} e^{-0.01 r} d r \\
& =0.02 \times e^{-0.2} \times \frac{\left(1-e^{-0.05}\right)}{0.01} \\
& =0.07986
\end{aligned}
$$

And

$$
\frac{5 p_{x}^{\overline{00}}}{{ }_{5} p_{x}^{00}+5 p_{x}^{01}}=\frac{0.7788}{0.7788+0.07986}=0.90699
$$

Exercises

8.2 Use the permanent disability model with:
$\mu_{50+t}^{01}=0.02, \mu_{50+t}^{02}=0.03, \mu_{50+t}^{12}=0.11,0 \leq t \leq 5$.
An insurance policy will pay a benefit only if the life currently 50 and healthy, has been disable for one full year before age 65 . Calculate the probability that the benefit is paid.

In order for the benefit to be paid the life must mve from State 0 to State 1 at age $x+r$ where $r<14$ and then the life must remain in state 1 continuously for at least 1 year. Hence the probability that the benefit is paid is:

$$
\int_{0}^{14} r p_{x}^{\overline{00}} \mu_{x+r}^{01} 1 p_{x+r}^{\overline{11}} d r
$$

Now, $r p_{x}^{\overline{00}}=\exp (-0.05 r)$ and ${ }_{1} p_{x+r}^{\overline{11}}=\exp (-0.11)$ and thus:

$$
\begin{aligned}
\int_{0}^{14}{ }_{r} p_{x}^{\overline{00}} \mu_{x+r}^{01} p_{x+r}^{\overline{11}} d r & =\int_{0}^{14} e^{-0.05 r} \times 0.02 \times e^{-0.11} d r \\
& =0.02 \times e^{-0.11} \frac{\left(1-e^{-0.7}\right)}{0.05} \\
& =0.18039
\end{aligned}
$$

Exercises

8.3 Use the sickness-death model (health-sickness) model with $\mu_{x+t}^{01}=0.08, \mu_{x+t}^{02}=0.04, \mu_{x+t}^{10}=0.1, \mu_{x+t}^{12}=0.05,0 \leq t \leq 5$
a) Calculate the probability that a life aged x who is currently in State 1 remains in State 1 for the next 15 years.

$$
\begin{aligned}
{ }_{15} p_{x}^{\overline{11}} & =\exp \left(-\int_{0}^{15}\left(\mu_{x+r}^{10}+\mu_{x+r}^{12}\right) d r\right) \\
& =\exp \left(-\int_{0}^{15}(0.1+0.05) d r\right) \\
& =\exp (-0.15 \times 15)=0.10540
\end{aligned}
$$

b) Calculate the probability that a life aged x who is currently in State 1 makes exactly one transition to State 0 and then remains in State 0 over the next 15 years.

$$
\int_{0}^{15} r p_{x}^{\overline{11}} \mu_{x+r}^{10} 15-r p_{x}^{\overline{00}} d r
$$

Now,

$$
\begin{aligned}
{ }_{15-r} p_{x}^{\overline{00}} & =\exp \left(-\int_{0}^{15-r}\left(\mu_{x+s}^{01}+\mu_{x+s}^{02}\right) d s\right) \\
& =\exp (-0.12(15-r))
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \int_{0}^{15} r p_{x}^{\overline{11}} \mu_{x+r}^{10} 15-r p_{x}^{\overline{00}} d r \\
= & \int_{0}^{15} e^{-0.15 r} \times 0.1 \times e^{-0.12(15-r)} \\
= & 0.1 e^{-1.8} \frac{\left(1-e^{-0.45}\right)}{0.03}=0.19967
\end{aligned}
$$

8.6 Calculate $\bar{A}_{79: 1]}^{02}$ using the Standard Sickness -Death model tables in Appendix D, with an interest rate of 5% per year.

$$
\begin{aligned}
\bar{A}_{79: 1}^{02} & =\bar{A}_{79}^{02}-v_{1}{ }_{19} p_{79}^{01} \bar{A}_{80}^{12}-v_{1} p_{79}^{00} \bar{A}_{80}^{02} \\
& =0.0749
\end{aligned}
$$

Exercises

8.8 An insurer calculates premiums for permanent disability insurance. A life aged 60 purchases a policy with a five-year term which provides a benefit of 100,000 on exit from a healthy state.
a) Write down an expression in terms of transition intensities, probabilities and δ for the EPV of this benefit at force of interest δ per year.

The EPV of the benefit is::

$$
100,000 \int_{0}^{5} e^{-\delta t}{ }_{t} p_{60}^{00}\left(\mu_{60+t}^{01}+\mu_{60+t}^{02}\right) d t
$$

b) Calculate the EPV of the benefit when $\mu_{x}^{01}=0.01$ and $\mu_{x}^{02}=0.015$ for $60 \leq x \leq 65$ and $\delta=0.05$.

$$
\begin{aligned}
{ }_{t} p_{60}^{00} & =\exp \left(-\int_{0}^{t}\left(\mu_{60+s}^{01}+\mu_{60+s}^{02}\right) d s\right) \\
& =\exp \left(-\int_{0}^{t} 0.025 d s\right) \\
& =\exp (-0.025 t)
\end{aligned}
$$

Hence the $\underset{5}{E P V}$ of the benefit
is: $100,000 \int_{0}^{5} e^{-0.05 t} \times e^{-0.025 t} \times 0.025 d t=10,423.69$

Exercises

Example 8.7 An insurer issues a 10 -year disability income insurance policy to a healthy life aged 60 . Premiums are payable continuously while in the healthy state. A benefit of $\$ 20,000$ per year is payable continuously while in the disabled state. A death benefit of $\$ 50,000$ is payable immediately on death. Use the Standard Sickness model in Appendix D3, assume interest is 5\% per year and there are no expenses. Calculate the premium.

The equation of value is:

$$
P \bar{a}_{60: 10 \mid}^{00}=20,000 \bar{a}_{60: 10 \mid}^{01}+50,000 \bar{A}_{60: \overline{10}}^{02}
$$

$\bar{a}_{60: 10 \mid}^{00}=\bar{a}_{60}^{00}-v^{10}{ }_{10} p_{60}^{00} \bar{a}_{70}^{00}-v^{10}{ }_{10} p_{60}^{01} \bar{a}_{70}^{10}=6.5885$
$\bar{a}_{60: 10}^{01}=\bar{a}_{60}^{01}-v^{10}{ }_{10} p_{60}^{00} \bar{a}_{70}^{01}-v^{10}{ }_{10} p_{60}^{01} \bar{a}_{70}^{11}=0.6476$
$\bar{A}_{60: 10}^{02}=\bar{A}_{60}^{02}-v^{10}{ }_{10} p_{60}^{00} \bar{A}_{70}^{02}-v^{10}{ }_{10} p_{60}^{01} \bar{A}_{70}^{12}=0.16382$

Hence, as

$$
\begin{aligned}
P & =\frac{20,000 \bar{a}_{60: \overline{10}}^{01}+50,000 \bar{A}_{60: \overline{10}}^{02}}{\bar{a}_{60: \overline{10}}^{00}} \\
& =3,209
\end{aligned}
$$

