Actuarial Mathematics II MTH5125

Algorithm for the excel file used in 6.3

Spring Term

Steps

- 1. Find yearly death rate $_{k|}q_{x}$ which is equivalent to $P\left(K=k\right)$ for $k=\left\{ 0,1,2...\right\}$
- 2. Set up a table to help with the equivalence principle:
 - 2.1 First column the yearly death rates calculated above $_{k|}q_{x}$
 - 2.2 Second column: discount rates: v^{k+1}
 - 2.3 Third column: \$1- annuity payments (certain) $\ddot{a}_{K+1} = 1 + v^1 + v^2 + ... + v^K$
 - 2.4 Fourth coulumn: \$1 life time assurance benefit: $v^{k+1}_{k|q_x}$ -the sum all values gives $\sum_{k=0}^{\infty} v^{k+1}_{k|q_x}$ which is **the expected** value of the benefit outgo.
 - 2.5 Fifth column- life time annuity (take into acount the expected future lifetime): multiply first column to third column- the sum all values gives $\sum\limits_{k=0}^{\infty} \ddot{a}_{\overline{k+1}|k|} q_x$ which is **the expected** value of the income

