Actuarial Mathematics II MTH5125

Algorithm for the excel file used in 6.3

Spring Term

Steps

1. Find yearly death rate ${ }_{k \mid} q_{x}$ which is equivalent to $P(K=k)$ for $k=\{0,1,2 \ldots\}$
2. Set up a table to help with the equivalence principle:
2.1 First column - the yearly death rates calculated above ${ }_{k} \mid q_{x}$
2.2 Second column: discount rates: v^{k+1}
2.3 Third column: \$1- annuity payments (certain)
$\ddot{a}_{K+1}=1+v^{1}+v^{2}+\ldots+v^{k}$
2.4 Fourth coulumn: $\$ 1$ - life time assurance benefit: $v^{k+1}{ }_{k \mid} q_{x}$ -the sum all values gives $\sum_{k=0}^{\infty} v^{k+1}{ }_{k} \mid q_{x}$ which is the expected value of the benefit outgo.
2.5 Fifth column- life time annuity (take into acount the expected future lifetime): multiply first column to third column- the sum all values gives $\sum_{k=0}^{\infty} \ddot{a}_{\overline{k+1}} k \mid q_{x}$ which is the expected value of the income
