Actuarial Mathematics II MTH5125

Revision: Insurance benefits Chapter 4 (DHW)

Dr. Melania Nica

Spring Term

- ► Amicable Society for a Perpetual Assurance Office:
 - ► Founded in London, 1706.
 - First company offering life insurance.
- Society for Equittable Assurances on Lives and Survivorship:
 - ▶ Also known as Equittable Life, founded in London, 1762.
 - World's oldest mutual life insurer.

Introduction to life insurance

Samuel Huebner (1882-1964)

- One of the first insurance economists.
- ► The Economics of Life Insurance(1927):
 - ▶ Not to insure adequately through life insurance is to gamble with the greatest economic risk confronting man. If understood, the gamble is a particularly selfish one, since the blow, in the event the gamble is lost, falls upon an innocent household whose economic welfare should have been the family head's first consideration.

Life insurance vs life assurance

https://www.legalandgeneral.com/insurance/lifeinsurance/definitions/assurance-vs-insurance/

► In DHW - insurance/assurance

Insurance benefits - assumptions

- <u>Technical basis</u> = a set of assumptions used for performing life insurance or pension calculations.
- Technical basis in this chapter (used in the examples):
 - The Standard Ultimate Survival Model:

$$\mu_{x} = 0.00022 + 2.7 \times 10^{-6} \times 1.124^{x}$$

- A constant interest.
- These are (pedagogically) convenient assumptions.

Conventions:

- Time 0 = now
- Time unit is 1 year.

Insurance benefits - assumptions

Some notions of financial algebra

- \bullet i = annual rate of interest.
- $i^{(p)}$ = nominal interest (compounded p times per year):

$$\left(1 + \frac{i^{(p)}}{p}\right)^p = 1 + i$$

• δ = force of interest:

$$\delta = \ln\left(1+i\right)$$

• v = yearly discount factor:

$$v = \frac{1}{1+i} = e^{-\delta}$$

• d = discount rate per year:

$$d = 1 - v = i \ v = 1 - e^{-\delta}$$

• $d^{(p)} = \text{nominal discount rate (compounded } p \text{ times per year)}$:

$$d^{(p)} = p\left(1 - v^{\frac{1}{p}}\right) = i^{(p)} v^{1/p}$$

Insurance benefits - assumptions

Cash flow notations

• The cash flow with payment c at time t is denoted by

• The cash flow $(\alpha c, t)$ is often denoted by

$$\alpha(c,t)$$

 In previous notations, c and t may be deterministic or random.

Whole life insurance - the continuous case (db payable at instant of death)

- Consider a life insurance underwritten on (x) at time 0, with a payment of 1 at T_x .
- Benefit cash flow:

$$(1, T_x)$$

Present value:

$$Z = v^{T_x} = e^{-\delta T_x}$$

Actuarial value (or EPV):

$$\overline{A}_{x} \stackrel{\text{not.}}{=} \mathbb{E}\left[e^{-\delta T_{x}}\right] = \int_{0}^{\infty} e^{-\delta t} p_{x} \mu_{x+t} dt \tag{4.1}$$

Whole life insurance - the continuous case

$$\overline{A}_{x} = \int_{0}^{\infty} e^{-\delta s} p_{x} \, \mu_{x+s} \, ds$$

Figure 4.1 Time-line diagram for continuous whole life insurance.

Whole life insurance - the annual case (db payable at end of year of death)

- Consider a life insurance underwritten on (x) at time 0, with a payment of 1 at $K_x + 1$.
- Benefit cash flow:

$$(1, K_x + 1)$$

Present value:

$$Z = v^{K_x+1}$$

$$A_x \stackrel{\text{not.}}{=} \mathbb{E}[v^{K_x+1}] = \sum_{k=0}^{\infty} v^{k+1}_{k|q_x}$$
 (4.4)

Whole life insurance - the annual case

$$A_x = \sum_{k=0}^{\infty} v^{k+1} _{k|} q_x$$

Figure 4.2 Time-line diagram for discrete whole life insurance.

Whole life insurance: the 1/m-thly case

The floor function:

|r| =largest integer smaller than or equal to r.

• The 1/m-thly curtate future lifetime of (x):

$$K_{x}^{(m)} \stackrel{\text{not.}}{=} \frac{1}{m} \lfloor mT_{x} \rfloor$$
 (4.7)

- $K_X^{(m)}$ = future lifetime of (x) in years, rounded down to the lower 1/m-thly of the year.
- The pdf of $K_x^{(m)}$: For k = 0, 1, 2, ...,

$$\mathbb{P}\left[K_{x}^{(m)} = \frac{k}{m}\right] = \mathbb{P}\left[\frac{k}{m} \le T_{x} < \frac{k+1}{m}\right]$$
$$= \frac{k}{m} |\frac{1}{m} q_{x}$$
$$= \frac{k}{m} p_{x} - \frac{k+1}{m} p_{x}$$

Whole life insurance: the 1/m-thly case

- Consider a life insurance underwritten on (x) at time 0, with a payment of 1 at $K_x^{(m)} + \frac{1}{m}$.
- Benefit cash flow:

$$\left(1, K_{\mathsf{x}}^{(m)} + \frac{1}{m}\right)$$

Present value:

$$Z = v^{K_x^{(m)} + \frac{1}{m}}$$

$$A_X^{(m)} \stackrel{\text{not.}}{=} \mathbb{E}[v^{K_X^{(m)} + \frac{1}{m}}] = \sum_{k=0}^{\infty} v^{\frac{k+1}{m}} \frac{1}{m} q_X$$

Whole life insurance: the 1/m-thly case

$$A_{x}^{(m)} = \sum_{k=0}^{\infty} v^{\frac{k+1}{m}} \frac{k}{m} \frac{1}{m} q_{x}$$

Figure 4.3 Time-line diagram for *m*thly whole life insurance.

Term insurance (policies of duration n): continuous case

Continuous case

- Consider a term life insurance underwritten on (x) at time 0, with a payment of 1 at T_x , provided $T_x < n$.
- Benefit cash flow:

$$(1_{\{T_x\leq n\}}, T_x)$$

• Present value:

$$Z = e^{-\delta T_x} \, \mathbf{1}_{\{T_x \le n\}}$$

$$\overline{A}_{x:\overline{n}|}^{1} \stackrel{\text{not.}}{=} \mathbb{E}[Z] = \int_{0}^{n} e^{-\delta t} {}_{t} p_{x} \mu_{x+t} dt$$
 (4.9)

Term insurance (policies of duration n): annual case

Annual case

- Consider a term life insurance underwritten on (x) at time 0, with a payment of 1 at $K_x + 1$, provided $K_x + 1 \le n$.
- Benefit cash flow:

$$\left(1_{\left\{K_{x}+1\leq n\right\}},\ K_{x}+1\right)$$

Present value:

$$Z = v^{K_x+1} 1_{\{K_x+1 \le n\}}$$

$$A_{x:\overline{n}}^1 \stackrel{\text{not.}}{=} \mathbb{E}[Z] = \sum_{k=0}^{n-1} v^{k+1}{}_{k|} q_x$$
 (4.10)

Term insurance: the 1/m-thly case

- Consider a term life insurance underwritten on (x) at time 0, with a payment of 1 at $K_x^{(m)} + \frac{1}{m}$, provided $K_x^{(m)} + \frac{1}{m} \leq n$.
- Benefit cash flow:

$$\left(1_{\left\{K_{x}^{(m)}+\frac{1}{m}\leq n\right\}}, K_{x}^{(m)}+\frac{1}{m}\right)$$

Present value:

$$Z = v^{K_x^{(m)} + \frac{1}{m}} 1_{\{K_x^{(m)} + \frac{1}{m} \le n\}}$$

$$A^{(m)1} \stackrel{\text{not.}}{=} \mathbb{E}[Z] = \sum_{k=0}^{mn-1} v^{(k+1)/m} \frac{1}{m} \frac{1}{m} q_x$$
 (4.11)

Pure endowment

- Consider a pure endowment insurance underwritten on (x) at time 0, with a payment of 1 at time n, provided $T_x > n$.
- Benefit cash flow:

$$(1_{\{T_x>n\}}, n)$$

Present value:

$$Z = v^n \, 1_{\{T_x > n\}}$$

Actuarial value:

$$\left[{}_{n}E_{x} \stackrel{\text{not.}}{=} \mathbb{E}[Z] = v^{n}{}_{n}p_{x} \right]$$
(4.13)

Alternate notation:

$$A_{x:\overline{n}}$$

Endowment insurance:continuous case

Continuous case

- Consider an endowment insurance underwritten on (x) at time 0, with a payment of 1 at time T_x , provided $T_x \leq n$, and a payment of 1 at time n, provided $T_x > n$.
- Benefit cash flow:

$$(1,\min\left(\mathit{T}_{\mathsf{X}},\mathit{n}\right)) = \left(1_{\left\{\mathit{T}_{\mathsf{X}} \leq \mathit{n}\right\}},\mathit{T}_{\mathsf{X}}\right) + \left(1_{\left\{\mathit{T}_{\mathsf{X}} > \mathit{n}\right\}},\;\mathit{n}\right)$$

• Present value:

$$Z = v^{\min(T_x,n)}$$

$$\overline{A_{x:\overline{n}}} \stackrel{\text{not.}}{=} \mathbb{E}[Z] = \overline{A}_{x:\overline{n}}^1 + {}_{n}E_{x}$$
(4.17)

Endowment insurance: annual case

- Consider an endowment insurance underwritten on (x) at time 0, with a payment of 1 at time $K_x + 1$, provided $K_x + 1 \le n$, and a payment of 1 at time n, provided $K_x + 1 > n$.
- Benefit cash flow:

$$(1, \min(K_X + 1, n)) = (1_{\{K_X + 1 \le n\}}, K_X + 1) + (1_{\{K_X + 1 > n\}}, n)$$

• Present value:

$$Z = v^{\min(K_x + 1, n)}$$

$$A_{x:\overline{n}|} \stackrel{\text{not.}}{=} \mathbb{E}[Z] = A_{x:\overline{n}|}^1 + {}_{n}E_{x}$$
(4.19)

Endowment insurance: 1/m-thly case

- Consider an endowment insurance underwritten on (x) at time 0, with a payment of 1 at time $K_x^{(m)} + \frac{1}{m}$, provided $K_x^{(m)} + \frac{1}{m} \leq n$, and a payment of 1 at time n, provided $K_x^{(m)} + \frac{1}{m} > n$.
- Benefit cash flow:

$$\left(1, \min\left(K_x^{(m)} + \frac{1}{m}, n\right)\right)$$

Present value:

$$Z = v^{\min\left(K_x^{(m)} + \frac{1}{m}, n\right)}$$

$$A^{(m)} \underset{x:\overline{n}|}{\stackrel{\text{not.}}{=}} \mathbb{E}[Z] = A^{(m)1} \underset{x:\overline{n}|}{+} {_{n}E_{x}}$$
(4.20)

Recursive relations

- whole life insurance: $A_x = vq_x + vp_x A_{x+1}$
- term insurance: $A_{x:\overline{n}|}^1 = vq_x + vp_x A_{x+1:\overline{n-1}|}^1$
- endowment insurance: $A_{x:\overline{n}|} = vq_x + vp_x A_{x+1:\overline{n-1}|}$

Deferred insurance

- Consider a deferred term insurance underwritten on (x) at time 0, with a payment of 1 at T_x , provided $u < T_x \le u + n$.
- Benefit cash flow:

$$\left(1_{\{u< T_x\leq u+n\}}, T_x\right)$$

Present value:

$$Z = e^{-\delta T_x} 1_{\{u < T_x \le u + n\}}$$

$$\boxed{u|\overline{A}_{x:\overline{n}}^{1} \stackrel{\text{not.}}{=} \mathbb{E}[Z] = \int_{u}^{u+n} e^{-\delta t} p_{x} \mu_{x+t} dt}$$
(4.21)

Deferred insurance

• Deferred term insurance and actuarial discounting:

$$u|\overline{A}_{x:\overline{n}|}^{1} = uE_{x} \times \overline{A}_{x+u:\overline{n}|}^{1}$$
 (4.22)

Deferred vs. immediate insurance:

$$_{u|}\overline{A}_{x:\overline{n}|}^{1} = \overline{A}_{x:\overline{u+n}|}^{1} - \overline{A}_{x:\overline{u}|}^{1}$$
 (4.23)

• Term insurance in terms of yearly insurances:

$$\overline{A}_{x:\overline{n}|}^{1} = \sum_{r=0}^{n-1} {}_{r} |\overline{A}_{x:\overline{1}|}^{1}$$
 (4.24)

Deferred insurance

• Deferred term insurance in terms of yearly insurances:

$$u|\overline{A}_{x:\overline{n}|}^{1} = \sum_{r=u}^{u+n-1} {}_{r|}\overline{A}_{x:\overline{1}|}^{1}$$

• Whole life insurance in terms of yearly insurances:

$$\overline{A}_{x} = \sum_{r=0}^{\infty} {}_{r|} \overline{A}_{x:\overline{1}|}^{1}$$

• Term insurance in terms of whole life insurances:

$$A_{x:\overline{n}|}^{1} = A_{x} - {}_{n|}A_{x}$$

$$= A_{x} - {}_{n}E_{x} \times A_{x+n}$$

$$(4.25)$$