
Lecture Notes MTH6113:
Mathematical Tools for Asset Management∗

Dr Linus Wunderlich
thanks to Dr Kathrin Glau

January 26, 2023

Contents
0 Preliminaries (Week 1) 3

1 EMH: Efficient Market Hypothesis (Week 1) 3
1.1 The Weak Form of EMH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 The Semi-strong Form of EMH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 The Strong Form of EMH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Criticism and Use of the EMH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Stochastic Models of Long-Term Behaviour of Security Prices (Week 2) 7

3 Risk and Return (Weeks 3 and 4) 13
3.1 Shortfall probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Value at Risk and α-quantiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Stress test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Mean-Variance Portfolio Theory (Weeks 5 and 6) 21
4.1 Introduction to portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Mean & variance of the portfolio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Attainable sets of portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Minimal Variance Portfolio (MVP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5 Short selling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.6 Efficient frontier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.7 Adding a risk-free security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Factor Models of Asset Returns (Weeks 6 and 7) 28
5.1 Single factor models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Pricing (Weeks 7 and 8) 32
6.0 Mean-variance portfolio theory for several assets . . . . . . . . . . . . . . . . . . . 32
6.1 The Captial Asset Pricing Method (CAPM) . . . . . . . . . . . . . . . . . . . . . . 34

6.1.1 CAPM formula: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.1.2 The security market line (SML) . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.1.3 Efficient portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.1.4 How to use CAPM? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.1.5 Discussion of the validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2 The arbitrage pricing theory (APT) . . . . . . . . . . . . . . . . . . . . . . . . . . 38
∗We try to ensure that these lecture notes include all the material covered. Unfortunately, this might not always

be the case and there may be mistakes or differences to the lectures. Please email L.Wunderlich@qmul.ac.uk if you
note any mistakes. For the exam and in-term assessments only the material presented in the lectures is relevant.

1

mailto:L.Wunderlich@qmul.ac.uk


7 Utility Theory (Weeks 9 and 10) 39
7.1 Reminder: convex and concave functions . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2 Expected utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.3 Pricing lotteries based on utility theory . . . . . . . . . . . . . . . . . . . . . . . . 44

8 Behavioural Finance (Week 11) 45

2



0 Preliminaries (Week 1)
Preliminary remark: This module differs from most other mathematical modules in that we are
exploring mathematics as a tool for financial purposes in this lecture rather than an aim. This
means that an understanding of the material is not possible by understanding the mathematical
bits alone. We have to understand the financial context. Ultimately, an equation or inequality
that we encounter in this lecture is not interesting as such, but we have to understand its financial
meaning. Chapter 1 gives us a first flavour, as we here introduce some basic lines of thoughts in
financial terms.

For organizational issues and preliminaries such as repetition from probability theory and basic
information on the financial market see the slides. Here, we give a basic list of notions from
probability.

Revision of probability theory Given random variables X,Y , we consider

• the expected value E(X):

–
∑
i xiP (X = xi) for discrete variables with possible values xi;

–
∫
R xfX(x) dx for the probability density function (pdf) fX .

• the variance Var(X) = E
(
(X − E(X))2);

• the standard deviation σX =
√

Var(X);

• the covariance Cov(X,Y ) = E ((X − E(X))(Y − E(Y )));

• the correlation corr(X,Y ) = Cov(X,Y )/(σXσY );

• the distribution function FX(x) = P (X ≤ x);

– for continuous variables, this is the integral of the density function: FX(x) =
∫ x
−∞ fX(ξ) dξ.

With random variables X,Y, Z and a deterministic scalar a, we frequently use:

• linearity of the expected value: E(aX + Y ) = aE(X) + E(Y );

• variance as the covariance with itself: Var(X) = Cov(X,X);

• symmetry and scaling of the covariance Cov(X,Y ) = Cov(Y,X) and Cov(aX, Y ) = aCov(X,Y );

• as a result also Var(aX) = a2 Var(X) and σaX = aσX ;

• bilinearity of the covariance: Cov(aX + Y,Z) = aCov(X,Z) + Cov(Y, Z),

• which yields Var(X + Y ) = Var(X) + 2 Cov(X,Y ) + Var(Y ),

• and if X and Y are independent also Var(X + Y ) = Var(X) + Var(Y ).

1 EMH: Efficient Market Hypothesis (Week 1)
Efficient markets restrict possibility to strategically make profit that is larger than the market’s
average.

The general line of thoughts is this one: If whenever you spot a possibility ”to beat the market”,
e.g. by being able to predict the price, you believe that. . .

1. . . .there would have been many others to know the price in advance,

2. . . .these others would have bought the stock,

3. . . .the resulting bids would yield to a rise of today’s stock price,

4. . . .this would happen very fast and until the advantage vanishes,
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then you believe in the efficiency of the market.
In more detail, we discuss three main formulations of market efficiency:

• Weak form of the EMH:
The current stock price reflects all the historical stock prices;

• Semi-strong form of the EMH:
The current stock price reflects all public information;

• Strong form of the EMH:
The current stock price reflects all public and private information.

The weaker formulations are contained in the stronger formulations, i.e.:

strong form holds ⇒ semi-strong form holds ⇒ weak form holds.

1.1 The Weak Form of EMH
Under the weak form of EMH investments based on past stock prices do not yield superior returns.

”Technical Analysis”, i.e. predicting price movements based on past prices is not possible under
this hypothesis. A simple example of strategy that would classify as technical analysis follows the
idea ”the trend is your friend“: Here you invest in stocks when there is an upwards trend.

Advice: be careful with such ideas, scientific studies show that this strategy is less profitable
than a ”buy and hold” strategy, when trading costs are taken into account. See Part 2 of ? for
more examples.

Roughly, the weak form of EMH means that an investor cannot ”beat the market” based on
the knowledge of past stock prices.

”Beating the market” means to consistently outperform the market. A clear way to ”beat the
market” is by arbitrage, i.e. by making a profit without risking a loss.

There are investment strategies trying to ”beat the market”, which are consistent with the
weak EMH. For instance:

A) Fundamental analysis: Model the intrinsic value of a company and invest in underrated
stocks; then wait for the price to approach the intrinsic value.

B) Quickly react to news with your investment strategy, e.g.:

– announcements about the company / the market, e.g. higher profit then expected, new
CEO, . . .

– rumours, e.g. expected merger, expected contracts
– political events, e.g. tax and tariffs; strike action, changed regulations.

The general line of thoughts behind the weak EMH is this one: If it is possible to ”beat
the market” based on knowledge of past prices, then algorithms are produced to do so. Large
companies will use these algorithms and trade accordingly. This will rapidly lead to a rise of
demands of specific products. This rise in demand in turn will be visible to those ones who sell
these products and therefore lead to a rise of the price of these products. This process will continue
until the price is finally so high that the strategy is no longer superior. Now, this process is assumed
to be very fast and one may assume that it has already been in place once we see the prices.

1.2 The Semi-strong Form of EMH
Under the semi-strong form of the EMH investments based on any publicly available information
do not yield superior returns.

The hypothesis assumes that the price adjusts immediately to new information, e.g. the an-
nouncement of quarterly earnings, dividends, new stocks.

Public information means is anything that is publicly available and relatively easy to acquire
(e.g. press releases, newspapers, financial magazines). Non-public Information: is information that
is not publicly available, for instance insider information. Notice that insider trading is usually
illegal. However, many cases of insider trading are indeed documented.
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1.3 The Strong Form of EMH
Nobody can consequently outperform the market with their investment.

The line of thoughts is very similar to the other two cases.

1.4 Criticism and Use of the EMH
In general, is difficult to test the hypotheses, as the primary information is not available. In regards
to the semi-strong form of efficient market hypothesis, one can study the influence of information
releases on prices of financial instruments. There is, stronger criticism against the validity of the
strong hypothesis: if we believe that insider trading is not profitable, that has strong consequences.
Many cases of insider trading are documented, so one cannot argue that they do not exist. In order
to have sufficient insider trading so that prices reflect all insider information, a significant number
of insiders need to trade, such that the price can reflect their private information.
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Figure 1: Scatter plot of subsequent plots for GE’s returns within over 55 years. The empirical
correlation 1, 46% is not statistically significant.

There are also arguments based on data that support the EMH: the scatter plot 1 shows that
returns of subsequent days are uncorrelated for a specific time series of prices. This means that
the autocorrelation of the stock returns corr(Rt+1, Rt) ≈ 0. This empirical observation has been
repeatedly made for other asset price time series as well thus underpinning that the future price
cannot be predicted based on the past and today’s price. At least this is evidence against a very
basic form of predicting the price based on the price history thus supporting the weak EMH. Some
studies have investigated the possibility of outperforming the market by comparing the long-term
performance of mutual funds with the one of the market, the latter here is represented by the
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Wilshire 5000 Total Market Index, see Figure 1.4. In some years mutual funds outperformed the
market, but no fund does so consistently, underpinning the strong EMH.

The different forms of EMH follow intuitive rationales. This is highly beneficial for getting
a first understanding of trading strategies and modelling purposes. We discussed rationales of
trading strategies: Those based on the believe that one can consistently outperform the market
using historical prices, those based on the believe that one can consistently outperform the market
using publicly/ private information. The position of facing a strongly efficient market is that one
of a market participant who does not believe to be able to use information to ”beat the market”.

The benefit of the EMH for modelling purposes is the following: the financial market is utterly
complex and simplifications need to be made before one is able to formulate a mathematical model.
The different forms of the EMH give a reasonable rational to formulate such simplifications. In
this sense, we are with this chapter at a stage where we set the ground for mathematical tools, for
being able to formulate and justify mathematical models for the behaviour of financial quantities.

Figure 2: Example of a binomial model over three time periods.

The observation of uncorrelated subsequent returns andthe reasoning underpinning the EMH
supports the random walk theory of stock prices. Here, we model stock prices randomly, und in
a way that the daily increments are independent of the history of prices. An simple example of a
model respecting these features is the binomial model, compare Figure ??.

1.5 Summary
The implication on potential investments is of large interest for us:

1. Assuming none of the hypothesis holds, you can find investments, which are based on

• patterns found in historical stock prices, or
• any information concerning the company/the market

and can consistently expect profits that are larger than the market average.

2. Assuming only the weak form is valid, you cannot find investments, which consistently yield
superior profit and are based on

• patterns found in historical stock prices,

however, it can be based on

• any further information concerning the company/the market.

3. Assuming the semi-strong form (hence also the weak form) is valid, you cannot find invest-
ments, which consistently yield superior profit and are based on

• any public information,
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investment based on investor may believe in investor does not believe in

historical stock prices no EMH weak form

public information weak form semi-strong form

private information semi-strong form strong form

investor needs to in-
crease risk, to increase
expected payoff

strong form -

Table 1: Overview of the EMH

however, it can be based on

• any private information concerning the company/the market.

4. Assuming the strong form (hence also the semi-strong and weak forms) is valid, you cannot
find

• any investment that consistently yield superior profit.

The only way to increase the expected return is to

• increasing the risk.

An overview on what can/cannot be used to design superior investment strategies is Table 1.
Empirical evidence of the weak formulation of efficient markets can be found, but testing the

hypotheses is difficult. The validity of the hypotheses is therefore also criticised. The EMH is
useful to get an orientation towards the investment strategies and to simplify the complexity of
real markets to set the ground for mathematical modelling.

2 Stochastic Models of Long-Term Behaviour of Security
Prices (Week 2)

A consequence of the efficient market hypothesis is the random walk theorem, stating that the
returns on subsequent days are independent of each other. An important model is the lognormal
model.

The Log-normal Model With (St)t∈N the daily stock price, we consider (Xt)t∈N the daily
log-returns Xt = log(St+1/St). Log-returns for several days are obtained by summing up the daily
log-returns:

log(St)− log(Ss) =
t−1∑
i=s

Xi,

i.e. St = Ss exp(
∑t−1
i=s Xi) for s < t.

The key-assumption for the lognormal model is that

• the daily log-returns Xt are iid (i.e. independent and identically distributed), and that

• this distribution is a normal distribution N (µ, σ2).

Parameter Estimation in the Log-normal Model Given N iid random variables Xi with an
assumed distribution, e.g. N (µ, σ2), we need to estimate the model parameters, here µ and σ. Here,
Xi for each i represents the daily log-return of a stock, and the model parameters are the mean µ
and the volatility σ of the log-returns, and σ2 is its variance. Parameter estimation of a time series
of data is a large and deep area of statistics. The estimation will only approximately represent
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Figure 3: Stock prices. Left: Empirical data; Right: Lognormal model

the real time series, and in view of the limited number of observations, the error needs to be well
understood. On the one hand one may choose or build an estimator that fulfils many desirable
statistical features, which allow to better judge the quality of the estimation, on the other hand one
would like to keep the estimation process as simple as possible. Since mathematical simplification
in terms of model assumptions meet reality here, there is a large number of sources of additional
errors. Here, we make a very simple and convenient choice, we consider the empirical mean and
variance to estimate µ and σ2 via

µ ≈ X = (X1 + . . .+XN/N), (empirical mean)

σ2 ≈ 1
N − 1

N∑
i=1

(Xi −X)2 (empirical variance).

In Excel, for instance, these formulas can be conveniently implemented through the commands
AVERAGE (computing the mean of a cell range) and STDEV.S (computing the standard deviation of
a cell range).

This simple choice of estimators comes with some crucial statistical properties. In the Home-
work, Coursework 1 you will show the following: If E(X) = µ and Var(X) = σ2/N , then X)
converges to the mean µ with probability 1. This is called consistency. Essentially, this means that
if we pick more and more observations, the empirical mean converges to the true mean. Another
basic property of estimators is unbiasedness.

A parameter estimate θ̂N of the true parameter θ is called unbiased, iff E(θ̂N ) = θ. In other
words, if the estimated parameter is in mean equal to the true parameter. The Mean Square Error
(MSE) can be represented in terms of the bias and the variance of the estimator,

MSE = E
(

(θ̂N − θ)2
)

= bias(θ̂N)2 + var(θ̂N),

if the estimator is unbiased, the bias vanishes. One can show that both the empirical mean
and the empirical variance are unbiased estimators. In fact, the first guess for a good estimator
of the variance might be 1

N

∑N
i=1(Xi − X)2. This estimator is consistent, however is biased.

In contrast, the estimator 1
N−1

∑N
i=1(Xi − X)2 is unbiased and consistent, and therefore is the

standard estimator of the variance, which is called the empirical variance.

Comparison of the Log-normal Model to Market Data An example of the stock price is
given in Figure 3.

When comparing the model with empirical data, we see the limitations, in particular:

• Volatility clustering is observed (large squared daily returns are likely to follow each other),
but not present in the lognormal model, see Figure 4

• Large losses are underestimated with the lognormal model, see Figures 4 and 5. While the
higher lieklyhood of large gains and losses is visible in the tails ofthe histogram, it is present
in form of spikes in the time series of log-returns.
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Figure 4: Log-returns Top: Empirical data; Bottom: Lognormal model

Figure 5: Histogram for log-returns and normal pdf
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The consequences of underestimating large losses can be severe! ”[. . . ] Large fluctuations in the
stock market are far more common than Brownian motion predicts. The reason is unrealistic as-
sumptions – ignoring potential black swans. [. . . ]“ see https://www.theguardian.com/science/
2012/feb/12/black-scholes-equation-credit-crunch

If the Black-Scholes model is systemically used to estimate the risk and underestimates large
losses, this leads to a systemic underestimation of large losses. This can have severe consequences
as financial institutions thus may face a lack of risk capital in times of crises. This in turn can lead
to a further destabilisation of the system and can advance a crisis. This does not mean that the
Black-Scholes model is not a good model. It is a very good model in the sense that it displays some
features of the stock market in a very simple way. However, it cannot serve all purposes. It has its
clear shortcomings and when it is used systemically in the wrong way this can lead to damages on
a global scale. It is therefore highly important that you understand the benefits and shortcomings
of the Black-Scholes model. Moreover, it is important to realise that whatever model you use, it
has its specific scope and you need to understand its benefits and shortcomings very well. This is
of a urgent economic meaning, globally.

(In)dependence and (no) autocorrelation and volatility clusters In Figure 4 we see clus-
ters of high changes in the subsequent returns. This is known as volatility clusters. There
presence indicate a dependence of subsequence returns, contradicting one of the basic assumptions
of the log-normal model.

Next, let us graphically study the autocorrelation of the returns, i.e. the correlation between
subsequent returns. To do so, we build pairs (Rt, Rt−1) of all subsequent returns observed. We
plot the value of Rt on the x-axis and the value of Rt−1 on the y-axis, thus obtaining the scatter
plot Figure 6. The points are centred around zero, radially symmetric. This indicates that there
is no linear dependence between Rt and Rt−1. Computing the empirical autocorrelation yields
−0.016 confirming that this is very low, thus no indication of a linear dependence. Notice that
this is a rudimentary approach, only to get a rough idea. To make this mathematically conclusive,
one would need to employ statistical techniques, which goes beyond the scope of this lecture. This
observation has been made consistently,

Figure 6: Scatter plot of subsequent returns of the HSBC stock prices.

To summarize our findings, returns of stock prices (and also log-returns as they are very similar)
exhibit

• No autocorrelation: corr(Rt, Rt+1) ≈ 0 (this is in line with the weak form of EMH)

• Volatility clustering: corr(R2
t , R

2
t+1) > 0. We can observe periods of large volatility and of

small volatility;

• Heavy tails / spikes: High losses and gains much more likely than for normally distributed
random variables.

The presence of volatility clusters indicates a dependence of subsequence returns. However,
we also observed no autocorrelation. Correlation and dependence of random variables is closely
linked. If two random variables are independent they are uncorrelated. The contrary, however is
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not always true. For instance consider X standard normally distributed. Clearly X and X2 are
dependent. What is their correlation? For returns, we look for such random variables, which have
no autocorrelation, but which are dependent.

Stylized Facts To model the stock price evolution in an appropriate way means to balance
model complexity against realistic features. Researchers have established a list of stylized features,
that is features that stock prices typically exhibit. This step is helpful in modelling as it establishes
the features that a model should reproduce. In practice, the actual goal of the model determines
which features are most important and which ones may be ignored. Building a good model is a
highly nontrivial task, each model will clearly not be perfect: Each model is flawed. But which
model is good enough for the actual tasks at hand? This type of work, modelling, is done in
financial institutions when internal models are build and validated, it is also a vivid research area.

Here, we have listed three of the most important stylized features of the daily returns that
we have observed. Deeper discussion and more stylised facts: R. Cont, Empirical properties of
asset returns: stylized facts and statistical issues, Quantitative Finance, Volume 1, 2001 https:
//www.lpsm.paris/pageperso/ramacont/papers/empirical.pdf

Autoregressive Model A better fit of the data is available with more complex models, e.g. the
autoregressive AR(1) process. There the volatility (i.e. standard deviation of the log-returns) is a
stationary autoregressive stochastic process:

Xt = µt+ σtZt, Zt ∼ N (0, 1) iid ,

σt = α+ βσt−1 + vεt, εt ∼ N (0, 1) iid , |β| < 1,

with Zt and εt being independent of each other and of σt−1, Xt−1. The autoregressive model
introduces a positive correlation of the volatility and hence the magnitude of returns. This way
volatility clusters are introduced. Challenges are the fitting the parameters and a more complex
evaluation compared to the lognormal model.

Comparison AR(1) Model to Market Data In order to obtain a first impression on the
behaviour of the AR(1) model compared to market data, we simulate log-returns in the model, for
an arbitrary choice of the parameters. Note that we did not fit the parameters, so the comparison
is in a preliminary stage and we can only have a glimpse on the behaviour in respect to stylized
facts. We display the time series of the related stock prices, the time series of the log-returns, in
comparison to one empirically observed time series of market data in Figure 7. From the time

Figure 7: Log-returns Top: AR(1) model; Bottom: Empirical data

series of stock prices itself it is hard to extract stylized facts, similarities or differences. Turning to
the time series of log-returns, however, we observe that the AR(1) model reproduces clusters, i.e.
periods of a large number of high returns in absolute values and periods of lower numbers of high
returns. We also observe some positive and negative spikes. Both features are more extreme in the
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empirical time series, but note that we did not fit the parameters and we have only one example
here, so we should not draw any conclusion from this single observation.

Next, we display the histogram of log-returns from the empirically observed prices, in the AR(1)
model, in a log-normal model in Figure 8. We observe that the shape of the empirical distribution
of the log-returns is better reproduced, it is steeper around the mean and higher returns are more
likely than in the log-normal model. Both the steeper form in the middle and the slower decay of
the tails are visually more similar to the market data then the histogram of the log-normal returns.

Figure 8: Histogram of Log-returns

Estimation of Parameters in the Autoregressive Model The general approach to derive the
model parameters α, β, v in σt = α+βσt−1+vεt is the following two-stage procedure. First, estimate
the expectation value E(σt), the variance Var(σt) and autocorrelation corr(σt, σt−1). Second, derive
the parameters

β = corr(σt, σt−1),
α = (1− β)E(σt),
v2 = (1− β2) Var(σt).

The challenging step is to estimate the empirical volatility. Remember how we estimate the em-
pirical variance in the log-normal model, σ2 ≈ 1

N−1
∑N
i=1(Xi − X̄)2. The subtle point is that this

is a good estimator if the sequence Xi is iid. However, the AR(1) model is build in such a way to
create dependence of the log-returns. The main difficulty thus is that

• Xi are not independent in the AR(1) model, and

• σt is different for each Xt, but it is impossible to estimate the variance with a single data
point only.

Figure 9: Time series of locally estimated volatilities.
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As a compromise we use here a naive parameter fitting approach, a local estimate. We estimate
the local variance using 5 neighbouring values of the log-return:

σ2
t ≈ 1/4

t+2∑
i=t−2

(
Xi − X̄

)2
.

The resulting time series of the volatility is shown in Figure 10. Then we use this time-series to
estimate E(σt), Var(σt) and corr(σt, σt−1). We apply this approach to the time series of HSBC
stock prices, and obtain E(σt) ≈ 0.0138, Var(σt) ≈ 1.05 ·10−4, corr(σt, σt−1) ≈ 0.9013. A graphical
comparison of the empirical log-returns and log-returns simulated from the AR(1) model is shown
in Figure

Figure 10: Time series and histogram of log-returns. Left: simulated from the AR(1) model; right:
empirical.

Further Alternative Models There is a large and ever growing family of stock price models,
each model comes with advantages and disadvantages. Here we list a few approaches and concrete
models.

The AR(1) model is discrete in time. Many models are continuous in time, which makes
the analysis often much more elegant and therefore easier for complex tasks. Time-continuous
extensions of the AR(1) model for the volatility have been developed, the most famous ones are

• Ornstein-Uhlenbeck (OU) process,

• Cox-Ingersoll-Ross (CIR) model.

The latter is used as volatility process in the famous Heston model for option pricing.

3 Risk and Return (Weeks 3 and 4)
Assessment of risk is one of the most important parts of mathematical finance. Quantified risk
can be used to evaluate investments, as well as optimize a portfolio of assets. We first discuss the
dominance of assets based on mean and variance and then discuss various measures of risk.

First, we consider a basic risk quantity. Comparing a savings account with fixed interest rates
with a stock, one basic difference is that we know in advance how the investment of the savings
account will change over time, while we do not know how the stock price will change over time,
the broader the expected deviation, the more risky the asset feels. This brings us to the first basic
notion of risk in finance, the volatility, or its square, the variance. More precisely, we consider the
variance of returns Var(R) = E

(
(R− E(R))2) as a measure of risk. It

• measures uncertainty in terms of scatter around the expectation,
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• measures distance between realised and expected return R− E(R),

• by the square the sign vanishes and larger deviations are weighted higher than smaller ones,

• by taking the outer expectation, the deviations are weighted according to their likelihoods.

• The variance is 0 if there is no risk!

Consider now two opportunities to invest. The first investment is one with a return of high variance,
say 20% and low expectation, for instance 0.01. The second possible investment is one without risk,
i.e. the variance is zero, and the double return, 0.02. Which investment is more risky? To make it
even more extreme, let the expected return of the risky asset be negative. These examples show
that for investment decisions, the variance alone cannot measure the risk. A sensible approach is
to consider both mean and variance of the returns.

For the investment evaluation based on mean and variance, we consider each investment as a
pair (µ, σ) of the returns mean µ = E(R) and standard deviation σ =

√
Var(R).

Definition 1. An investments (µ1, σ1) dominates another investment (µ2, σ2), iff

µ1 ≥ µ2, σ1 ≤ σ2,

and one of the inequalities is strict (i.e. not equal). We write (µ1, σ1) � (µ2, σ2).

An investment is dominated, when another investment has a higher expected payoff with less
risk. Note that not all pairs can be ordered. Investments that are not dominated form the efficient
subset

Definition 2. Given a set of investments A = {(µi, σi), i ∈ I}. An investment (µ̂, σ̂) ∈ A is
an element of the efficient subset Aeff , iff it is not dominated, i.e. there is no i ∈ I, such that
(µi, σi) � (µ̂, σ̂).

We can use the efficient subset to determine reasonable investments. If we have a given set of
investments and we want to invest according to the mean-variance analysis, only elements of the
efficient subset are reasonable.

We can evaluate the efficient subset by testing pairwise dominance and neglecting all elements
that are dominated. Graphically dominance means that the dominating asset lies towards the top
left in the σ-µ plane, see Figure 11.

To summarize, the pair of expectation and variance of returns,

• represents both the level of return that we can expect and the risk we take.

• together can be investigated by comparing different investments on the (σ, µ)-plane.

• cancelling out the pairs for which we find a better alternative leaves us with the efficient
subset.

This is the basis of investment theory!
We also observe some drawbacks of the variance as risk measure, namely,

• unexpected large profit contributes same as a loss Remember.

• we cannot distinguish between frequent small losses and rare huge losses.

• Variance follows historical prices, and does not allow us a tool to include the impact of events
(such as the outbreak of a global pandemic or the Brexit or the storming of the US Capitol)
which are not reflected in historical price series.

These are severe shortcomings, and therefore further risk measures have been developed. Building
good risk measures is, as building models, a highly complex task. Each attempt to pin down
the risk in a single number will ultimately fail to assess the true risk completely. The nature of
financial risks is too complex. However, quantifying essential aspects of the risk in a single number
is utterly important in order to deal with the risk in a responsible manner. When dealing with
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Figure 11: Several stocks in the σ − µ-plane and their efficient subset.

risk measures it is crucial to understand the scope of the measure, what does it reflect and what
does it not reflect? Remember, there is always something that the risk measure does not capture,
so always be sure to understand very well what it does and what it does not reflect.

Ultimately, the development and the understanding of measuring financial risks is highly rel-
evant for financial institutions and sound risk measures are required to control the risk of invest-
ments. On a systemic level, controlling the risk of the investments of all institutions is required to
guarantee the stability of the financial system and of the economy as a whole.

Next, we consider the semi-variance as a slight adaptation of the variance as a risk measure
and then we turn to the most commonly used risk measures in practice, the shortfall probability
and the value-at-risk. Finally, we briefly discuss the concept of stress testing, which is one of the
pillars of financial risk assessment.

Semi-variance The first drawback of the variance as risk measure listed above is that losses
and gains equally contribute to the variance, while investors will welcome gains and suffer from
losses. In order to adapt the semi-variance is defined by E(min{0, X − µ}2). It measures the
downside-risk. As a major drawback, we observe that it is still highly dependent on the mean µ,
also the other two criticism listed above are still valid.

3.1 Shortfall probability
The variance is a very simple measure of investment risk. While it enables us to easily compare
stocks, for a more detailed investigation more advanced risk measures need to be considered.
Shortcomings include:

• due to it’s dependency on the expected value, assets with a larger expected value may seem
riskier although they are not;

• unexpected large gains are valued the same as unexpected large losses;

• the variance does not give any information about the size of the risk or their probability. A
likely small loss can have the same variance as a less likely huge loss.

15



Figure 12: Illustration of the empirical shortfall probability.

To solve the problems, the shortfall probability and the Value at Risk can be considered. They
answer the questions

• how likely are large losses (shortfall probability);

• how large are likely losses (Value at Risk).

Both are based on the realised loss L = −R (note, that we can use either the return R or the
log-return X in the definition of the loss, depending on the situation; the results will differ only
slightly). The shortfall probability can best be evaluated using the distribution function of the
return R: FR(x) = P (R ≤ x):

SF(b, R) = P (L ≥ b) = FR(−b),

see Figure 13 for an illustration. Roughly, the shortfall probability measures how likely large losses
are. More precisely, it measures how likely losses larger than a pre-specified threshold are.

How to compute the shortfall probability? If we have a model at hand, we can do that with
the help of the density, or the distribution function directly. If we have an observation of a time
series of daily returns Xt for days t = 1, . . . , N instead, we need to evaluate the empirical shortfall
probability instead. This is given by

SFe(b) = |{t : 1 ≤ t ≤ N, s.t.−Xt > b}|
N

.

Figure 12 illustrates how to obtain the empirical shortfall probability for 20 samples and the
threshold b = 0.1. We count 4 samples below the threshold, which is 20%, therefore SFe(0.1) =
20%.

3.2 Value at Risk and α-quantiles
The shortfall probability quantifies how likely losses beyond a given threshold are. Asking differ-
ently, we may want to know with which level of loss do we have to probably deal? For instance, we
would like to be prepared to compensate all likely losses with cash, while we leave it open how we
move on when a larger loss happens, because the scenario is unlikely. The notion of value-at-risk
makes this mathematically precise. First, we have to specify what we mean with likely losses. This
is done by specifying a confidence level, for instance 95%.

The value-at-risk is the maximum amount to be lost with a specified likelyhood, i.e. at a pre-
defined confidence level. For example, if the 95% VaR is 1 million, there is 95% confidence that
the portfolio will not lose more than 1 million.

The Value at Risk is defined as

VaRα = inf{b : P (L > b) < 1− α}.
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If the distribution function of the return FR is continuous and strictly increasing, we can use the
inverse function to evaluate the value at risk:

VaRα = −F−1
R (1− α).

Note: we usually evaluate VaRα for α > 0.5, e.g. 95% or 99%, which yields 1 − α < 0.5. See
Figure 14 for the illustration of the evaluation using the density function.

-b=-1.5

P(-X>b)

Figure 13: Evaluating the shortfall probability SF(X, 1.5) using the distribution function (here X
log-return)

Reminder: The distribution function FX(x) := P (X ≤ x) is left-continuous

Definition 3. For α ∈ (0, 1) the number

qα(X) = inf{x : α < FX(x)}

is called upper α-quantile of X.

qα(X) = inf{x : α ≤ FX(x)}

is called the lower α-quantile of X.
Any q ∈ [qα(X), qα(X)] is called α-quantile of X.

• If FX is continuous and strictly increasing,

qα(X) = qα(X) = F−1
X (α).

• VaRα = −q1−α(X).

Note: different notations are used in practice, e.g. VaR95% is sometimes denoted VaR5%.
Examples:

1. uniform distribution → Tutorials

2. normal distribution → Homework
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Figure 14: Evaluating the Value at Risk VaR95% using the inverse of the distribution function
(here X log-return)

3. discrete random variable: Note: This example is not part of the lecture. It is only
included for your own interest.

Why do we consider discrete random variables? Two examples are

a) Binary options, e.g.

Payoff =
{

£100, ST < £1, 200
£0, ST ≤ 1, 200.

b) Corporate bond with given probability p for a default. E.g.

Return =
{

1, with probability 1− p
−1, with probability p (default).

Let’s work on an example return of

RT =


−0.9 p = 0.1,
−0.1 p = 0.4,
1 p = 0.5.

The distribution function is given as

FRT
(x) = P (RT ≤ x) =


0, x < −0.9,
0.1, −0.9 ≤ x < −0.1,
0.5, −0.1 ≤ x < 1,
1, 1 ≤ x.
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With the help of the draft we see

VaR80% = −q1−0.8(RT ) = −q0.2(RT ) = − inf{x : 0.2 < FRT
(x)}

= − inf{x ≥ −0.1} = 0.1,

and also q0.2(RT ) = −0.1 for the lower quantile.
For a threshold at 90% we have

VaR90%(RT ) = − inf{x : 0.1 < FRT
(x)} = 0.1,

while the lower quantile yields

q0.1(RT ) = inf{x : 0.1 ≤ FRT
(x)} = inf{x : x ≥ −0.9} = −0.9.

This means that any q ∈ [−0.9,−0.1] is a 10%-quantile of RT .

Empirical Value-at-risk To compute the empirical value-at-risk, proceed along the following
two steps: Let α be the confidence level and Rt for t = 1, . . . , Nsamples the observed daily returns.

1) Sort the values of Rt by magnitude.

2) Consider the smallest (1− α)Nsamples elements and choose the value of the largest one.

This process is illustrated in Figure 15. To deepen the understanding of the empirical value-at-risk,

Figure 15: Illustration of the empirical value-at-risk.

remember that sorting the observations by magnitude yields the empirical distribution function.
The value-at risk is q quantile of the empirical distribution, compare Figure 16.

Shortcomings of the Value-at-risk Some shortcoming of the Value at Risk is that it does
not give us any information about the distribution of the loss in the unlikely case of (1 − α).
Furthermore it does not enable us to study the influence of possible events without precedent.
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Figure 16: Illustration of the empirical value-at-risk as quantile of the empirical distribution.

3.3 Stress test
The idea behind stress testing is to model important possible scenarios and the compute the related
risk. A possible implementation is done along the following steps:

1. Build a factor model for the ingredients of the portfolio.

2. Specify a set of stress scenarios S ⊂ Ω.

(for instance high/moderate/low interest rates and high/moderate/low inflation rates)

3. For all ω ∈ S compute the future portfolio gain G(ω).

4. For losses L = −X compute worst case loss

%(L) = sup{L(ω)|ω ∈ S}

when we restrict our attention to those element of the space of possible events that belong
to S, our selected scenarios.

Example: Consider one stock S and a risk-free asset with rate r. We assume the stock-price is
given by the random variable

S1 =
{
S0(1 + µ+ σ), p = 1/2,
S0(1 + µ+ σ), p = 1/2.

where the current mean and variance are µ = 0.05 and σ = 0.1. The risk-free rate is r = 4% and
we have invested £1, 000 each in the stock and the risk-free security.

The stress test defines certain scenarios and returns the worst-case lost. Then one needs to
check, whether the result is acceptable (passing the stress test) or not (failing it). In our case these
scenarios could be

Ω = {“µ = −0.5, σ = 0.05, r = 0.03”,
“µ = 0, σ = 0.2, r = 0.01”, . . .}
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In each case the maximal loss is computed, e.g.

R(“µ = −0.5, σ = 0.05, r = 0.03”) = (1000(1− 0.5− 0.05) + 1000(1 + 0.03))/2000− 1
= 0.26

R(“µ = 0, σ = 0.2, r = 0.01”) = (1000(1 + 0.0− 0.2) + 1000(1 + 0.01))/2000− 1
= 0.095.

In this case the largest loss would be L=-9.5%.

4 Mean-Variance Portfolio Theory (Weeks 5 and 6)
• What is a portfolio?

– A collection of investments hold (here stocks/risk-free securities)

• Why is portfolio theory so interesting?

– A lot more can happen than with single assets.

Illustrative example: Ice-cream sellers & umbrella sellers. We model that the following
summer will be either rainy or sunny, both equally likely. If it is rainy the umbrella sellers make a
larger profit, while ice-cream sellers make a loss. In a sunny summer the situation is the reverse.

rainy summer (p = 50%) sunny summer (p = 50%)
Return ice-cream sellers (R1) -5% +10%

Return umbrella corporation (R2) +10% -5%

Both investments have an expectation of 2.5% and a standard deviation of 7.5%. If we buy
equal parts of the ice-cream seller and the umbrella corp. we have a return of

1
2R

1 + 1
2R

2 =
{

2.5%, p = 50%,
2.5%, p = 50%.

,

i.e. a safe return of 2.5% (standard deviation zero).
Why does this happen → both investments are negatively correlated:

corr(R1, R2) = Cov(R1, R2)
σ1σ2

=
E
(
(R1 − µ1)(R2 − µ2)

)
σ1σ2

= −1.

Note that a correlation of −1 is a very extreme case unlikely to happen in practice. Let us have a
look at an example with no correlation:

R1 =
{

10%, p = 1/2
−5%, p = 1/2

, R2 =
{

10%, p = 1/2
−5%, p = 1/2

,

which are independent of each other. Due to their independence, the joint distribution now has
four cases:

probability: 25% 25% 25% 25%
R1 10% 10% –5% –5%
R2 10% –5% 10% –5%

1
2 (R1 +R2) 10% 2.5% 2.5% –5%

For the portfolio this yields E( 1
2 (R1 +R2)) = 2.5% and

√
Var( 1

2 (R1 +R2)) ≈ 5.3% < 7.5%.
In general we see that a portfolio can have a smaller expected value than the individual assets,

while having an expectation value as large as both assets. This is called diversification.
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4.1 Introduction to portfolios
In the following, we try to optimise our portfolio. We will figure out how to distribute the money
and what other choices remain.

Let us consider

• 2 Stocks S1, S2 with expected return µ1, µ2, variances σ2
1 , σ

2
2 and correlation ρ;

• 2 dates t ∈ {0, 1}:

– t = 0 is today, i.e. values S1(0), S2(0) are deterministic;
– t = 1 is some point in the future, i.e. values S1(1), S2(1) are random variables.

A portfolio consists of buying/owning x1 stocks of asset 1 and x2 of asset 2. The current value is
known:

P(x1,x2)(0) = x1S
1(0) + x2S

2(0),

and the future value is a random variable:

P(x1,x2)(1) = x1S
1(1) + x2S

2(1).

Note that the amount of shares x1, x2 can be quite disproportional to their value, e.g. with x1 = 1
and S1(0) = £150 the value is higher than for x1 = 10 and S1(0) = £10. We therefore introduce
weights w1, w2, which represent proportion of our wealth P(x1,x2)(0) invested in the two assets:

w1 = x1S
1(0)

P(x1,x2)(0) , w1 = x2S
2(0)

P(x1,x2)(0) ,

with w1 + w2 = 1.
The weights allow us to conveniently express the return RP(w1,w2) of our portfolio in terms of

the individual returns R1 = S1(1)/S1(0)− 1 and R2 = S2(1)/S2(0)− 1:

RP
(w1,w2) =

P(x1,x2)(1)
P(x1,x2)(0) − 1 = x1S

1(1) + x2S
2(1)

P(x1,x2)(0) − 1

= x1S
1(1)

P(x1,x2)(0) + x2S
2(1)

P(x1,x2)(0) − 1

= x1
S1(0)

P(x1,x2)(0)
S1(1)
S1(0) + x2

S2(0)
P(x1,x2)(0)

S2(1)
S2(0) − 1

= w1
S1(1)
S1(0) + w2

S2(1)
S2(0) − w1 − w2 = w1R

1 + w2R
2,

i.e. RP = w1R
1 + w2R

2.
If we know the proportions we wish to invest in each asset, i.e., we have the weights w1, w2

given, we can compute the amount of shares as

x1 = w1P (0)
S1(0) , x2 = w2P (0)

S2(0) .

We typically ignore the fact that we cannot buy fractions of a share.

Example 1. We wish to invest £1 000 in equal parts in two assets with S1(0) = 10, S2(0) = 100.
With the initial wealth P (0) = 1 000 and the weights w1 = w2 = 1/2, we can compute the

amount of stocks:

• Asset 1: x1 = w1P (0)
S1(0) = 500

10 = 50, i.e. we buy 50 shares of company 1;

• Asset 2: x2 = w2P (0)
S2(0) = 500

100 = 5, i.e. we buy 5 shares of company 2.

We can compute the return either based on new prices or based on the given return:
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1. Given new prices S1(1) = 12, S2(1) = 100:

P (1) = x1S
1(1) + x2S

2(1) = 600 + 550 = 1 150,

i.e. RP = 15%.

2. Given returns: R1 = 20% and R2 = 10%:

RP = w1R
1 + w2R

2 = 15%.

4.2 Mean & variance of the portfolio
Given the formula for the return of the portfolio RP = w1R

1 +w2R
2, we can compute its expected

value µP = E(RP) and the variance σ2
P = Var(RP):

µP = E(w1R
1 + w2R

2) = w1E(R1) + w2E(R2) = w1µ1 + w2µ2;

as well as

σ2
P = Var(RP) = E

((
RP − E(RP)

)2) = E
((
w1R

1 + w2R
2 − E(w1R

1 + w2R
2)
)2)

= E
((
w1R

1 − E(w1R
1) + w2R

2 − E(w2R
2)
)2)

= E
((
w1R

1 − E(w1R
1)
)2)+ E

((
w2R

2 − E(w2R
2)
)2)+ 2E

((
w1R

1 − E(w1R
1)
)(
w2R

2 − E(w2R
2)
))

= w2
1 Var(R1) + w2

2 Var(R2) + 2w1w2 Cov(R1, R2)
= w2

1σ
2
1 + w2

2σ
2
2 + 2w1w2σ1σ2ρ.

Theorem 1. For a portfolio of two assets (µ1, σ1) and (µ2, σ2) with correlation ρ and the portions
w1 in asset 1, the portfolio’s return’s expectation µP and variance σ2

P satisfy

µP = w1µ1 + (1− w1)µ2

σ2
P = w2

1σ
2
1 + 2w1(1− w1)σ1σ2ρ+ (1− w1)2σ2

2 .

4.3 Attainable sets of portfolios
Which points of the (σ, µ)-plane can we attain:

{(σP(w1), µP(w1)) : w1 ∈ [0, 1]}

Let’s start with some special cases:
• ρ = 1: extreme positive correlation (artificial setting)

µP = w1µ1 + (1− w1)µ2

σ2
P = w2

1σ
2
1 + 2w1(1− w1)σ1σ2 + (1− w1)2σ2

2

= (w1σ1 + (1− w1)σ2)2

⇒ σP = w1σ1 + (1− w1)σ2.

Here the attainable set is a straight line connecting both assets:
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• ρ = −1: extreme negative correlation (also artificial)

µP = w1µ1 + (1− w1)µ2

σ2
P = w2

1σ
2
1 − 2w1(1− w1)σ1σ2 + (1− w1)2σ2

2

= (w1σ1 − (1− w1)σ2)2

⇒ σP = |w1σ1 − (1− w1)σ2| .

Again the attainable set is a straight line, but with one kink:

See the lecture slides for the non-trivial examples. Now let’s summarise the general case:

Theorem 2. The attainable set for µ1 6= µ2, ρ ∈ (−1, 1) is a hyperbola with its centre on the
vertical axis.

Proof e.g. Theorem 2.7 of Capinski, Kopp.

4.4 Minimal Variance Portfolio (MVP)
The attainable portfolio with the minimal risk (i.e. smallest σP) is called minimal variance portfolio
(MPV).

Example 2. For ρ = 0 we have

σ2
P = w2

1σ
2
1 + (1− w1)σ2

2 ,

µP = w1µ1 + (1− w1)µ2.

To find the MVP, we need to find w1 ∈ [0, 1], such that σP is minimal (and equivalently σ2
P). I.e.

we solve the optimisation problem

min
w1∈[0,1]

w2
1σ

2
1 + (1− w1)2σ2

2

Since the function is convex in w1, we can find the maximum as the root of the first derivative:

d
dw1

(w2
1σ

2
1 + (1− w1)2σ2

2) = 2(σ2
1 + σ2

2)w1 − 2σ2
2 = 0,

i.e.
w1 = σ2

2
σ2

1 + σ2
2
, w2 = σ2

1
σ2

1 + σ2
2
.

This yields

σMVP = σ2
1σ

2
2

σ2
1 + σ2

2
, µMVP = µ1σ

2
2 + µ2σ

2
1

σ2
1 + σ2

2
.
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Theorem 3. Let σ1 > σ2 be the standard deviations for both assets and ρ ∈ (−1, 1) their correla-
tion. Then the MVP is given for the weights

w1 = max
(

σ2
2 − ρσ1σ2

σ2
1 + σ2

2 − 2ρσ1σ2
, 0
)
.

and w2 = 1− w1.

Proof. See Tutorial 5.

4.5 Short selling
Assuming no restrictions on short-selling, negative weights are positive

w1 ∈ R, w2 = 1− w1 ∈ R.

Negative weights include a leverage (borrow the less profitable asset & sell it to buy the more
profitable one.)

Theorem 4 (MVP, general case). With no restrictions on short-selling and ρ ∈ (−1, 1), the MVP
is given for the weights

w1 = σ2
2 − ρσ1σ2

σ2
1 + σ2

2 − 2ρσ1σ2
,

and w2 = 1− w1.

4.6 Efficient frontier
Definition 4. The efficient subset of the attainable set is called efficient frontier.

Observe: The efficient frontier is the part of the attainable set, which connects the MVP with
the asset of the highest expectations (and continuing beyond if short-selling is possible).

When no short-selling is possible, it is a closed set (including the end points), otherwise it is
half-bounded with the MVP as its end-point.
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4.7 Adding a risk-free security
As risk-free asset is like a bank account, where we earn a fixed interest on our money. In the case of
short-selling, we assume that we can borrow money for the same rate and without any restrictions.

Combinations of an asset with the risk-free asset form a straight line. We can view any portfolio
of assets 1&2 as an individual asset and then apply the known theory.

Example 3. We compare two cases with a wealth of £1 000:

a) investing £700 in BP and £300 in Shell

b) investing w0 = 1/2 into the bank account and investing the rest to BP and Shell with the
same ratio’s as in part a).

Investment (b) then means to put £500 into the bank account, and investing £350 in BP and £150
in Shell.

In the mean-variance diagram, portfolio (b) is in the middle of portfolio (a) and the riks-free
portfolio.

See the slides for further examples.

Efficient frontier with a risk-free asset

The efficient frontier is a tangent to the attainable set of all portfolios that include assets 1&2.
(Special cases do exist in the case of no short-selling and are outlined in the lecture slides).

The tangent point, which connects the risk-free security with the attainable set of assets 1&2
is called Market Portfolio (MP).

Theorem 5. If µ0 < µMVP the weights of the market portfolio are

w1 = c

c+ d
, w2 = d

c+ d
,

where

c = σ2
2(µ1 − µ0)− ρσ1σ2(µ2 − µ0),

d = σ2
1(µ2 − µ0)− ρσ1σ2(µ1 − µ0)
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Proof sketch (This has not been part of the lecture; it is only included for your own
interest) Maximise the slope of the line connecting any portfolio with the risk-free security to
find the tangent.

The slope is given in dependency of w1 as

s(w1) = ∆µ(w1)
∆σ(w1) ,

and we need to solve the optimisation problem

max
w1∈R

s(w1).

We note graphically that there is a unique solution, so we can find it by looking for roots of
the derivative:

findw1 s.t. s′(w1) = 0,

i.e.

0 = s′(w1) = µ′(w1)σ(w1)− (µ(w1)− µ0)σ′(w1)
σ2(w1) ,

where

µ(w1) = w1µ1 + (1− w1)µ2,

σ(w1)2 = w2
1σ

2
1 + 2ρw1(1− w1)σ1σ2 + (1− w1)2σ2

2 .

For the derivatives of µ and σ this yields

µ′(w1) = µ1 − µ2,

σ′(w1 = d
dw1

(√
σ2(w1)

)
= 1

2
√
σ2(w1)

d
dw1

(
σ2(w1)

)
= 1

2
√
σ2(w1)

(
σ2)′ (w1).

This yields

s′(w1) =
µ′(w1)σ(w1)− (µ(w1)− µ0) 1

2σ(w1)
(
σ2)′ (w1)

σ2(w1)

= 2µ′(w1)σ2(w1)− (µ(w1)− µ0)(σ2)′(w1)
2σ3(w1) .

The fraction can only be zero if the nominator is zero, so we solve

2µ′(w1)σ2(w1)− (µ(w1)− µ0)(σ2)′(w1) = 0,

where
(σ2)′(w1) = 2w1σ

2
1 + 2ρσ1σ2 − 2ρ2w1σ1σ2 − 2(1− w1)σ2

2 .

Inserting and solving this finishes the proof.
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Why is it called market portfolio? The line connecting the MP with the risk-free asset (called
capital market line, CML) forms the efficient frontier of an idealised market. Hence any efficient
investment consists of a portion of the MP and the risk-free security. No investor has any reason
to divert from this strategy, hence the MP must reflect the whole market.

5 Factor Models of Asset Returns (Weeks 6 and 7)
For further reading, the book of McNeil, Frey and Embrechts, Quantitative Risk Management, has
a chapter on factor models.

Let’s recall some key finding from the past chapters:

• Diversification: Combining two stocks in a portfolio can reduce the risk.
⇒ We will try to consider as many stocks at the same time as possible

• Risk&Return: Variance has some drawbacks as a risk-model. For more insights, we con-
sidered the value-at-risk and the shortfall probability, which can be based on stock price
models.

Hence we go back to Chapter 2, and recall e.g. the log-normal model. With the log-normal model,
the stock price is modelled as a stochastic process with independent normal log-returns:

S(T ) = S(0) exp
(
T−1∑
t=0

X(t)
)
, X(t) ∼ N (µ, σ) iid.

For several stocks S1, . . . , Sd, we can generate several stochastic processes

Si(t) = Si(0) exp
(
T−1∑
t=0

Xi(t)
)
, Xi(t) ∼ N (µ, σ) iid.

With Xi(t) being independent, also the modelled stock prices for different stocks are independent.
This is not what we observe in practice, where significant correlations of different assets can be
observed. Therefore, we investigate models that account for the dependence of different stocks.

It is easier to create independent random variables, than dependent ones. Therefore, we try to
combine independent random variables to create dependent random variables with certain proper-
ties.

Example 4. Create Y1, Y2 normally distributed with

E(Y1) = 0, E(Y2) = 1, Var(Y1) = 1, Var(Y2) = 1, Cov(Y1, Y2) = 1/2.

Solution: Create Z1, Z2 ∼ N (0, 1) iid and set

Y1 = a1 + b11Z1 + b12Z2,

Y2 = a2 + b21Z1 + b22Z2.

and try to find the correct parameters, i.e.

0 = E(Y1) = E(a1 + b11Z1 + b12Z2) = a1 ⇒ a1 = 0
1 = Var(Y1) = Cov(Y1, Y1) = Cov(a1 + b11Z1 + b12Z2, a1 + b11Z1 + b12Z2)

= b211 + b212,

...

Compare to the coursework. As we have 6 parameters with 5 (non-linear) conditions, there might
exist several possible solutions.

Now let’s come back to stock prices and for simplicity consider only a single time-step:

Xi = Xi(0), i = 1, . . . , d.
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Full model. As seen in the example, we can model this as

Xi = ai +
d∑
j=1

bijZj , with Zj ∼ N (0, 1)

for i = 1, . . . , d. We can rewrite this as a matrix-vector product for

X = (Xi)i=1,...,d,B = (bij)i,j=1,...,d,a = (ai)i=1,...,d,Z = (Zj)j=1,...,d,

as
X = a + BZ.

The problem with this full model is the large dimension to consider. This yields a lot of
parameters to fit and makes the evaluation more difficult. E.g. when considering all FTSE 100
stocks, d2 = 10 000 parameters need to be fitted for the covariances alone.

To reduce these numbers, we do not consider the full dependency, but a dependency on a
number of common factors

F = (Fj)j=1,...p

and consider BF with B ∈ Rd×p for p ≤ d. This can drastically reduce the amount of parameters,
e.g. for p = 5 only 500 parameters need to be fitted for the FTSE 100.

However, BF does not allow for individual risk of each stocks (with 5 random processes for
100 stocks, they will all behave in very similar patterns). Therefore, we add idiosyncratic terms ε
to the model, which are independent, individual risks ε = (εi)i=1,...d: a + BF + ε with εi iid and
E(εi) = 0.

Linear Factor Model / p-Factor Model This yields

X = a + BF + ε,

with a ∈ Rd deterministic, B ∈ Rd×p deterministic, F = (F1, . . . , Fp)> ∈ Rp stochastic and
ε = (ε1, . . . , εd)> ∈ Rd stochastic. We assume corr(Fj , εi) = 0. The result X = (Xi)i=1,...,n is the
vector of the modelled log-returns on the assets.

• F is a random vector of common factors with p < d and a covariance matrix that is positive
definite (holds e.g. when Fj are independent of each other);

• ε is a random vector of idiosyncratic terms, which are uncorrelated and have mean zero;

• B ∈ Rd×p is a matrix of constant factor loadings, a ∈ Rd a vector of constants;

Note: we have formulated a quite general case. An easy example would be a log-normal factor
models with Fj ∼ N (0, 1), εi ∼ N (0, 1) iid and ai = µi. However in practice, the factors may not
be independent, e.g. when several market indices are considered. We will look into the choice of
the factors next. The idiosyncratic terms may depend on each other (but not correlate), e.g. when
volatility clustering is considered.

Types of factors

1. Macroeconomical factors;

2. Fundamental factors;

3. Statistical factors.

In more detail:

1. Macroeconomical factors are observable economic time-series, e.g. market indices, industrial
indices, interest rates, inflation, etc.
Example: F1 is the value of the FTSE 100 index, F2 of the FTSE 4GOOD index, F3 the
value of the FTSE All-Share index. Then the factor loadings B ∈ Rd×3 are unknown and
must be estimated.
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2. Fundamental factors are not observable. Examples are the industry sector, the country or
the continent. Here the factor loading is known, but the factors need to be modelled.
Example: consider the assets

(a) HSBC,
(b) Barclays,
(c) Shell,
(d) BP,
(e) Bank of America,

and the factors

(a) Company in the financial industry;
(b) Company in oil&gas;
(c) Company located in Europe.

Then we have three factors F = (F1, F2, F3), where the factor loading is given by

B =


1 0 1
1 0 1
0 1 1
0 1 1
1 0 0

 .

The factors F need to be modelled.

3. Statistical factors are factors purely based on statistical evidence. Neither B nor F are
observable. Examples include PCA (Principal Component Analysis) or statistical factor
analysis.
As an example, let us consider PCA for a single factor. There the stock prices are combined
linearly and we seek the stochastic processes, which can best explain the stocks (for processes
with mean zero). This is an optimisation problem, where we minimise the mean-squared-error
of the combined process to the individual stocks as follows.
Based on the historical data Xi(t), i = 1, . . . , d, t = 0, . . . N we find ci, i = 1, . . . , d and
B = (bi1)i=1,...d ∈ Rd×1, such that

N∑
t=0

d∑
i=1

∥∥∥∥∥bi
d∑
j=1

cj(Xj(t)− µj)︸ ︷︷ ︸
F1

−(Xi(t)− µi)
∥∥∥∥∥

2

is minimal.
Statistic factors can be very powerful, as they need only few factors for a good approximation.
However, the factors lack interpretability.

5.1 Single factor models
A single factor model is the most simple form of factor models. It restricts the possible values of
the correlation, but allows for a clearer interpretation. In this subsection, we consider single factor
models of different complexities.

With p = 1 we have
Xi = ai + biF + εi, i = 1, . . . , d,

where F is a stochastic joint factor. An example would be a broad market index, e.g. the FTSE
All-Shares index.

Mean, variance and covariance are:
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• E(Xi) = ai + biE(F );

• Var(Xi) = b2i Var(F ) + Var(εi) as εi and F are uncorrelated;

• Cov(Xi, Xj) = bibj Var(F ) for i 6= j (also due to εi and F being uncorrelated).

A special one-factor model is Sharpe’s Single-Index Model (SIM), which brings an economic
interpretation:

Ri − µ0 = αi + βi(RM − µ0) + εi.

• µ0 is the risk-free rate;

• RM is the return of the market portfolio;

• εi ∼ N (0, σ2
i ) independent of each other and of RM.

• αi: the stock’s alpha: abnormal results

• βi: the stock’s beta: responsiveness to the market return.

The model was developed by William Sharpe in 1963 and is widely used in practice.

• All returns are corrected by the risk-free rate

• With the market portfolio as the single factor, the return of the stock is decomposed into
three parts:

– The abnormal return: any returns that outperforms the market consistently is influenced
by the alpha αi;

– The return may have a different responsiveness to market movements. With a small
value of β the stock price reacts only slightly to changes of the market. With β larger
than one, the stock price reacts stronger than the market;

– Each stock has an idiosyncratic risk, independent of the market and other stocks.

We will come across β again in our next chapter on CAPM.

Equicorrelation model (extra reading) A second, even simpler, single factor model is the
equicorrelation model:

Xi = √ρF +
√

1− ρεi, i = 1, . . . , d,

where F is the single factor with F, ε ∼ N (0, 1) iid, ρ ∈ (0, 1).
As the name suggests, the random variables Xi have the same mutual correlation coefficient:

E(Xi) = √ρE(F ) = 0;
Var(Xi) = ρVar(F ) + (1− ρ) Var(εi) = 1;

Cov(Xi, Xj) = Cov(√ρF +
√

1− ρεi,
√
ρF +

√
1− ρεj)

= ρVar(F ) = ρ, i 6= j,

hence corr(Xi, Xj) = %.
Where is this useful

• if you have several equal risks, e.g. with homogeneous credit portfolios;

• as a (drastically) simplified version of Sharpe’s SIM:

Ri = √ρRM +
√

1− ρεi,

where εi, RM ∼ N (0, 1) and µ0 = 0 are assumed for simplicity.
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Due to it’s simplicity, the model allows us to consider huge portfolios by hand:
Let us consider d stocks in an equicorrelation model and a portfolio of equal parts:

RP = 1/d
d∑
i=1

Ri

and
Ri = √ρRM +

√
1− ρεi.

Then expectation and variance are given as

E(RP) = 1
d

d∑
i=1

E(Ri) = 0,

Var(RP) = 1
d2 Var

(
d∑
i=1

Ri

)
= 1
d2

d∑
i,j=1

Cov(Ri, Rj)

= 1
d2

d∑
i,j=1

(ρ+ (1− ρ)δij) = 1
d2 (d2ρ+ d(1− ρ))

= ρ+ 1− ρ
d
→d→∞ ρ.

We immediately note two interesting facts:

1. With large portfolios the individual variance Var(Ri) becomes negligible in comparison to
the covariances Cov(Ri, Rj), due to the curse of dimension.

2. Investing into many assets eliminates the risk only up to a certain limit (dictated by the
market return).

This shows two different kinds of risk:

• The systemic risk which is due to the common factor, the market return RM.

• The specific risk which is individual to each asset and independent of other assets.

By diversification only the specific risk can be reduced. The systemic risk remains and will be
estimated further in the next chapter.

6 Pricing (Weeks 7 and 8)
Pricing models aim to explain the expected return of assets.

6.0 Mean-variance portfolio theory for several assets
Note: This subsection contains interesting insights and prepares for CAPM, but is not relevant for
the exam.

Before introducing the Capital Asset Pricing Model (CAPM), let us extend the portfolio theory
of Chapter 4 to several risky assets. Let d risky assets be given by:

• vector of their expected returns µ = (µ1, . . . , µd)>=
(
E(R1), . . . ,E(Rd)

)>∈Rd
• matrix of the pairwise covariances (symmetric and assumed to be invertible)

C =


Cov(R1, R1) Cov(R1, R2), · · · Cov(R1, Rd)
Cov(R2, R1) Cov(R2, R2), · · · Cov(R2, Rd)

· · · · · ·
. . . ...

Cov(Rd, R1) Cov(Rd, R2), · · · Cov(Rd, Rd)

 ∈ Rd×d.
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Figure 17: Attainable set for a portfolio composed of three assets (marked in the figure). Left:
without short-selling; Right: with short-selling.

A portfolio is given by any weights w = (w1, . . . , wd)> ∈ Rd with
∑d
i=1 wi = 1. Using the vector

1 = (1, . . . , 1)> ∈ Rd, we can rewrite it as
∑d
i=1 wi = w>1 (which is the scalar product of the

vector of weights (w1, . . . , wd)> with the vector of ones: (1, . . . , 1)>).
Analogue to Chapter 4, the portfolio’s return is given as RP =

∑d
i=1R

i. We can use this to
compute the expected return µP and variance µP of the portfolio:

µP =
d∑
i=1

wiµi = w>µ,

σ2
P =

d∑
i,j=1

wiwj Cov(Ri, Rj) = w>Cw.

The attainable set is then given as{
(σP, µP) : σ2

P = w>Cw, µP = w>µ, w>1 = 1
}
.

An example of the attainable set with and without short-selling can be found in Figure 17.
The attainable set is no longer a line, but in general an area. For simplicity, we neglect any

restrictions on short-selling.
As the interior of the set does not contain any efficient portfolios, it is sufficient to consider its

boundary: The minimal variance line.
Given a value m for the expectation, find a portfolio with µP = m and minimal variance:

min
w∈Rd

w>Cw

s.t. w>µ = m,

w>1 = 1.

This is a constrained optimisation problem, which requires advanced techniques to solve it. If you
are interested, read Chapter 3 of Capinski, Kopp. The optimisation problem is then solved in
Theorems 4.6–4.9 and it is shown, that the minimal variance line is a hyperbola.

With the minimal variance line as a hyperbola (as the attainable set used to be in Chapter 4),
we can apply most of our theory of Chapter 4:

Minimal variance portfolio. The MVP is found solving the constrained optimisation problem

min
w∈Rd

w>Cw

s.t. w>1 = 1.

33



Theorem 4.4. of Capinski, Kopp shows that this is solved by

wmin = C−11

1>C−11
.

Market Portfolio. If the risk-free return µ0 is less than the expected return of the minimal
variance portfolio µMVP, the market portfolio exists:

µMP = C−1(µ− µ01)
1>C−1(µ− µ01)

(see Theorem 4.10 of Capinski, Kopp;. The MP can be found by optimising the slope of the
portfolio, constrained by w>µ = 1.)

The capital market line is given as µ = µ0 + µMP−µ0
σMP

σ and is the efficient frontier.

6.1 The Captial Asset Pricing Method (CAPM)
Asset pricing tries to explains why different assets have different expectation values. The main
idea is that a higher expected value is a reward for taking a higher risk.

6.1.1 CAPM formula:

Theorem 6. Assume µ0 < µMVP (then the market portfolio (σMP, µMP) exist). Then the return
of the i-th asset is given as

µi = µ0 + βi(µMP − µ0), i = 1, . . . , d,

where βi = Cov(Ri,RMP)
σ2

MP
is the beta factor of the asset.

Proof. We consider portfolios consisting of asset i and the market portfolio. For some w ∈ R,
we invest a portion w in asset i and a portion 1−w in the market portfolio. This yields expected
return and variance

µw = wµi + (1− w)µMP,

σ2
w = w2σ2

i + (1− w)2σ2
MP + 2w(1− w) Cov(Ri, RMP).

From Chapter 4, we know that {(σw, µw) : w ∈ R} is a hyperbola, which passes through (σMP, µMP)
with the CML (capital market line) as the tangent.

Thus the slope of the tangent for w = 0 is the same as the slope of the CML:

∆µ
∆σ = µMP − µ0

σMP
.

We can evaluate the tangent of the hyperbola by its derivative with respect to w:

∂µw
∂w

∣∣∣∣
w=0

= µi − µMP;

as well as

∂σw
∂w

∣∣∣∣
w=0

= 1
2σw

∣∣∣∣
w=0
· ∂(σ2

w)
∂w

∣∣∣∣
w=0

= 1
2σMP

·
(
2wσ2

i + 2(w − 1)σ2
MP + 2(1− 2w) Cov(Ri, RMP)

)∣∣
w=0

= Cov(Ri, RMP)− σ2
MP

σMP
.
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Thus, the slope of the tangent is

∂µw

∂w
∂σw

∂w

∣∣∣∣∣
w=0

= µi − µMP
Cov(Ri,RMP)−σ2

MP
σMP

.

As it is the same as the slope of the CML, we can set it equal to µMP−µ0
σMP

and solve for µi:

µi − µMP = µMP − µ0

σMP
· Cov(Ri, RMP)− σ2

MP
σMP

= (βi − 1)(µMP − µ0)

= βi(µMP − µ0)− (µMP − µ0),

Thus
µi − µMP = βi(µMP − µ0).

Remark 1. The same formula holds for portfolios:

µP = µ0 + βP(µMP − µ0),

where βP = Cov(RP,RMP)
σ2

MP
.

In the CAPM formula, we see that the expected return of any investment is only determined
by the covariance with the market portfolio.

Interpretation

• β(µMP−µ0) is called risk-premium. It rewards investors, who expose themselves to a higher
market risk.

• the idiosynchratic term εP, such that

RP − µ0 = βP(RMP − µ0) + εP,

represents the specific/diversifiable risk. We can compute the variance:

σ2
P = β2

Pσ
2
MP + Var(εP).

As the specific risk εP can be diversified (by buying the market portfolio), it is not rewarded
by a higher expected return.

Computation of the variance:

Var(RP) = Var(µ0 + βP(RMP − µ0) + εP) = β2
P Var(RMP) + Var(εP) + βP Cov(RMP, εP),

where

Cov(RMP, εP) = Cov
(
RMP, RP − µ0 − βP(RMP − µ0)

)
= Cov(RMP, RP)− βP Cov(RMP, RMP) = 0.

6.1.2 The security market line (SML)

CAPM yields a linear relation between the expected return and the beta of a portfolio. Plotting
several portfolios in a β-µ-diagram, they should form a line: the security market line.
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6.1.3 Efficient portfolios

A portfolio is efficient if and only if corr(RP, RMP) = 1, see coursework. This yields

βP = Cov(RP, RMP)
σ2

MP
= σPσMP corr(RP, RMP)

σ2
MP

= σP

σMP
.

Thus for efficient portfolios there is no diversifiable risk and

µP − µ0 = βP(µMP − µ0)
σP = βPσMP.

6.1.4 How to use CAPM?

In the following, we discuss some ways how CAPM can be used for portfolio analysis.

• Value portfolios using the Sharpe ratio:

µP − µ0

σP
.

The larger the Sharpe ratio is, the more efficient is the portfolio. For efficient portfolios, we
have

µP − µ0

σP
= βP(µMP − µ0)

βPσMP
= µMP − µ0

σMP
,

where the Sharpe ratio of the market portfolio is maximal:

wMP = arg max
w,w>1=1

w>µ− µ0

w>Cw

(This holds by construction of the market portfolio, as (w>µ− µ0)/(w>Cw) is the slope of
the line connecting a portfolio with the risk-free asset.)

• Valuing the stock price:
CAPM models the required return for the taken risk. Strong deviation from the model can
be used as an investment strategy.

– If µi−µ0 > βi(µMP−µ0), the stock is underpriced and you could buy it (as the expected
return is larger than the required return)

– If µi − µ0 < βi(µMP − µ0), the stock is overpriced and you could sell it or short-sell it
(as the expected return is less than the required return considering the taken risk).

Remark: These transactions will push the market price towards predicted value and the
market gains efficiency.
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• Performance measure of a stock using Jensen’s alpha:
Jensen’s alpha is the difference of the realised return and the required return:

α = RP − (µ0 + βP(RMP − RP)),

where for this application, RP and RMP are the realised returns, i.e. empirical data. Jensen’s
alpha measures the past performance in comparison to the required return.

6.1.5 Discussion of the validity

As a mathematical model, CAPM has only few assumptions, e.g.,

• No trading costs (including brokerage fees, bid-ask-spread, taxes, etc);

• No restrictions on short-selling and borrowing money for the same rate as lending money;

• Available values for all covariances and expectations.

Knowing the parameters is crucial to compute the market portfolio, but not required beyond that.
A practical approach is thus to replace the “mathematically computed” market portfolio wMP by
a market-index.

(Reminder: If all investors buy efficient portfolios, everyone buys portions of wMP, hence it
reflects the whole market and can be replaced by an index)

This requires severely more assumptions, e.g.,

• all investors have the same time horizon;

• all investors can borrow or lend money with no risk at the same rate;

• all investors are non-satiated, risk-averse and trade purely based on σ and µ;

• “perfect market” – information is freely and instantly available, no investor believes they can
affect the price by their actions

• all investors have the same estimates for the parameters

• all investors measure in the same currency (e.g. pounds/dollars/ “value”).

We see that the assumptions to have wMP reflect the whole market are quite strong and often
criticised as being unrealistic.

How can we test CAPM? Idea: Plot the security market line.
Remember: The CAPM formula

µi − µ0 = βi (µMP − µ0)

predicts a linear relationship between the excess return µi−µ0 and βi = Cov(Ri, RMP)/σ2
MP. The

line in the β − µ-plane is called security market line (SML). We can plot the line by estimating
these parameters. Let (Sit)t=1,...N+1 be the historic time-series of asset prices of asset i and their
log-returns (Xi

t)t=1,...N ,

Xi
t = log

(
Sit+1
Sit

)
.

With the log-returns of a market index (XMP
t )t=1,...N , we can estimate

µi = E(Xi
t) ≈

1
N

N∑
t=1

Xi
t ,

µMP = E(XMP
t ) ≈ 1

N

N∑
t=1

XMP
t .
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βi = Cov(Ri, RMP)/σ2
MP can be estimated with

Cov(Xi
t , X

MP
t ) ≈ 1

N − 1

N∑
i=1

(Xi
t − µi)(XMP

t − µMP),

Var(XMP
t ) ≈ 1

N − 1

N∑
i=1

(XMP
t − µMP)2.

Finally, the risk-free rate µ0 needs to be defined, e.g. by a government bond.
Then all data points can be plotted in the β − µ-plane, as shown during the lecture. The

resulting figure did not resemble a line.

Why is the result of our test so bad? Several effects have an influence:

• The estimates, especially for µ are very sensible

• the risk-free return is unclear

• estimating a complete market portfolio is very difficult. FTSE 100 includes only 100 stocks
out of over 2,000 companies traded on the London Stock Exchange.

– we could go for a global index, e.g. MSCI World Index. However this still only includes
1,643 stocks from 23 countries, excluding e.g. Brazil and China.

– even if we found a perfect stock index, it lacks alternative investments which should be
taken into account, e.g. real-estates, private companies, human capital, ...

Some literature on CAPM and it’s validity

• Famous study of Black, Jensen, Scholes: “The Capital Asset Pricing Model: Some Empirical
Tests”, 1972

• Some further remarks by Black: “Beta and Return”.

To get more robust parameter estimates, they consider portfolios instead of single stocks. The
result indeed form a line, though the slope is smaller than expected.

6.2 The arbitrage pricing theory (APT)
(Ross et al, 1976)

• APT is a more general approach to asset pricing than CAPM

• it does not require an equilibrium (meaning that every investor holds the same portfolio)

• the price depends on certain factors with the only condition being that it must not allow for
arbitrage.

Reminder on factor models:

Ri = ai + bi1I1 + bi2I2 + . . .+ biLIL + εi,

with

• Ri the (stochastic) return of asset i,

• ai deterministic, εi the idiosyncratic risk (stochastic),

• I1, . . . , IL the (stochastic) return of L factors/indices,

• bi1, . . . , biL the deterministic factor loadings / sensitivity of security i to the factors,

where E(εi) = 0, Cov(εi, εj) = 0, Cov(Ik, εj) = 0.

38



APT The arbitrage pricing theory considers the factor model and requires that no arbitrage
exists. In this case, arbitrage refers to a risk-free profit that is larger than the risk-free rate. This
results in the condition ai = µ0 for all i. The resulting model then reads

µi = µ0 + λ1bi1 + . . .+ λLbiL,

where λk = E(Ik) and µ0 is the risk-free interest rate.

Why µ0 = ai? In an example we can see how arbitrage possibilities can be constructed once the
condition does not hold:

Let three diversified portfolios and one factor be given:

• R1 = 1 + I1,

• R2 = 1.5 I1,

• R3 = 1/2I1.

As the portfolios are diversified, we can assume εi = 0. Now buying R1 and short-selling 0.5 (R2 +
R3) yields a safe return of 1, without any necessary investment. This is an arbitrage possibility.

It can be shown in general, that no arbitrage exists if

(µi, bi1, . . . , biL) ∈ RL+1

for all i lie on a L-dimensional hyperplane in RL+1. This holds iff ai = µi.
A main advantage compared to CAPM is the higher flexibility. This comes at the cost of the

complexity to identify the correct factors and loadings.

Example 5. One example is the Fama-French three-factor model (not relevant for the exam)
The three factors are

1. the excess return of the market: µMP − µ0;

2. the out-performance of small companies compared to big companies (measured in terms of
market capitalisation, i.e. the product of stock prices and number of stocks);

3. the out-performance of companies with a high book-to-market value vs small book-to-market
value

Then the factor model reads

µi = µ0 + βi (µMP − µ0) + λi1SMB + λi2HML,

with

• SMB: small market capitalisation minus big market capitalisation;

• HML: high book-to-market ratio minus low book/market.

7 Utility Theory (Weeks 9 and 10)
Instead of measuring our wealth in absolute value (i.e. money), we consider its utility, i.e. the
satisfaction an individual obtains by a particular action.

We can measure the

• utility of the wealth, or

• utility of the payoff of a certain action, which we’ll use to value a single investment decision.
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Both measures are equivalent, if we assume all other investments to remain at the same value:

u(payoff) = ũ(wealth + payoff)− ũ(wealth)
ũ(wealth) .

This means that the payoff of a particular payoff is a scaled version of the utility function of the
wealth. We therefore only consider the utility of the payoff for a certain action.
Definition 5. A utility function is a function u : R→ R which is monotonic increasing.

Example 6. With this first example, we demonstrate which utility functions suit different risk
attitudes.

Let two lotteries be given with the payoff

L1 =
{

£2, probability 50%,
−£1, probability 50%,

L2 =


£2, probability 25%,
£0.5, probability 50%,
−£1, probability 25%,

Both lotteries have the same expected value £L1, while L1 bears more risk.

• If you are risk-seeking, you prefer L1,

• If you are risk-averse (risk-avoiding), you prefer L2,

• If you are risk-neutral, you are indifferent.

To decide for one of the lotteries, we value the expected utility:

E
(
u(L1)

)
vs. E

(
u(L2)

)
.

(Note that in general E
(
u(Li)

)
6= u

(
E(L1)

)
for nonlinear functions u.)

• E
(
u(L1)

)
= 1/2u(2) + 1/2u(−1)

• E
(
u(L2)

)
= 1/4u(2) + 1/2u(1/2) + 1/4u(−1)

1. If you are risk-seeking: E
(
u(L1)

)
> E(

(
u(L2)

)
:

⇔ 1/2u(2) + 1/2u(−1) > 1/4u(2) + 1/2u(1/2) + 1/4u(−1)

⇔ 1/2
(
u(2) + u(−1)

)
> u

(
2− 1

2

)
.

This is a convexity condition for u:

40



2. If you are risk-neutral: 1/2
(
u(2) + u(−1)

)
= u

( 2−1
2
)
, which means linearity of u.

3. If you are risk-averse: 1/2
(
u(2) + u(−1)

)
< u

( 2−1
2
)
, which is a concavity condition for u.

7.1 Reminder: convex and concave functions
Definition 6. A function u : R→ R is called

• strictly convex, iff
u
(
t x+ (1− t) y

)
< tu(x) + (1− t)u(y),

for all x, y ∈ R, t ∈ (0, 1). A famous example is u(x) = exp(x).

• strictly concave, iff
u
(
t x+ (1− t) y

)
> tu(x) + (1− t)u(y),

for all x, y ∈ R, t ∈ (0, 1). A famous example is u(x) = log(x) (for x > 0).

If u is twice differentiable, we can use the sign of the second derivative as a test:

• u′′(x) > 0 for all x ∈ R ⇒ u is convex,

• u′′(x) < 0 for all x ∈ R ⇒ u is concave.

7.2 Expected utility
Remember, that a utility function is required to be monotonic increasing.

Definition 7.

• A utility function, that is strictly concave is called risk-averse,
(Check if u′′(x) < 0).

• A utility function, that is strictly convex is called risk-seeking,
(Check if u′′(x) > 0).

41



• A utility function, that is linear is called risk-neutral.

We compare the expected utility for two cases:

1. A lottery L

2. A fixed payments of E(L).

• If you are risk-averse E(u(L)) ≤ u(E(L),
i.e. you need to be rewarded for taking risks.

• If you are risk-seeking E(u(L)) ≥ u(E(L),
i.e. you would pay to get the risky option.

• If you are risk-neutral E(u(L)) = u(E(L),
i.e. you do not care about the risk, only about the expected value.

Proof. We proof the inequality for the case of L being a discrete random variable and u being
risk-averse (without loss of generality).

Let xi be the possible outcomes of L, each with a positive probability of pi, i = 1, . . . , N , and∑N
i=1 pi = 1. Then

E
(
u(L)

)
=

N∑
i=1

pi u(xi),

u
(
E(L)

)
= u

(
N∑
i=1

pi xi

)
.

Thus, we need to show
N∑
i=1

pi u(xi) ≤ u
(

N∑
i=1

pi xi

)
for u concave, pi > 0 and

∑N
i=1 pi = 1.

We proof this by induction over N .1

• Base case N = 1:
p1u(x1) ≤ u(p1x1) with p1 = 1 is trivially true.

• Induction step N − 1 7→ N :
We assume that inequality holds for N − 1 terms and then conclude that it is still valid for
N terms. This means, we assume

N−1∑
i=1

qi u(xi) ≤ u
(N−1∑
i=1

qi xi
)

for any qi > 0 with
∑N−1
i=1 qi = 1. and show that

N∑
i=1

pi u(xi) ≤ u
( N∑
i=1

pi xi
)

for any pi > 0 with
∑N
i=1 pi = 1.

To show this, we first regroup the sum of N items as a sum of N −1 item with the remaining
item:

N∑
i=1

pi u(xi) =
N−1∑
i=1

pi u(xi) + pN u(xi) = (1− pN )
N−1∑
i=1

pi
1− pN︸ ︷︷ ︸

=:qi

u(xi) + pN u(xi)

1https://en.wikipedia.org/wiki/Mathematical_induction
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Defining qi = p1/(1− pN ), we have
∑N−1
i=1 qi = 1 and

N∑
i=1

pi u(xi) = (1− pN )
N−1∑
i=1

qixi + pNxN .

Setting t = 1− pN , x =
∑N−1
i=1 qixi and y = xN we can apply the concavity to show

u

(
N∑
i=1

pixi

)
= u

(
tx+ (1− t)y

)
≥ tu(x) + (1− t)u(y)

= (1− pN )u
(
N−1∑
i=1

qixi

)
+ pNu(xN ).

On the remaining term, we can apply our induction assumption:

u

(
N∑
i=1

pixi

)
≥ (1− pN )u

(
N−1∑
i=1

qixi

)
+ pNu(xN )

≥ (1− pN )
N−1∑
i=1

qiu (xi) + pNu(xN )

=
N−1∑
i=1

(1− pN )qiu (xi) + pNu(xN ) =
N∑
i=1

piu(xi).

Let’s have some examples to see how we can apply the utility theory:
Example 7. Lotteries L1 and L2:

L1 =
{

£110, probability 50%,
−£100, probability 50%,

L2 =


£110, probability 25%,
£5, probability 50%,
−£100, probability 25%.

1. We are risk-seeking with utility function u(x) = exp(x/100) − 1. How are the expected
utilities? Which lottery do we prefer?

E
(
u(L1)

)
= 1

2 (exp(1.1)− 1 + exp(−1)− 1) ≈ 0.686,

E
(
u(L2)

)
= 1

4 (exp(1.1)− 1 + exp(−1)− 1 + 2 exp(0.05)− 2) ≈ 0.11.

As expected E
(
u(L1)

)
> E

(
u(L2)

)
, we prefer Lottery 1.

2. We are risk-avoiding. Which lottery do we prefer? We prefer the lottery with the largest
expected utility, but must now decide on this question without a concrete function u at hands.
With the utility function being concave, we have

u(5) > 1
2
(
u(110) + u(−100)

)
,

which yields

E
(
u(L2)

)
= 1

4u(110) + 1
2u(5) + 1

4u(−100)

>
1
4u(110) + 1

4
(
u(110) + u(−100)

)
+ 1

4u(−100)

= 1
2u(110) + 1

2u(−100) = E
(
u(L1)

)
.
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7.3 Pricing lotteries based on utility theory
The certainty equivalent

u−1
(
E
(
u(L)

))
is the single payoff that would result in the same utility as expected for the lottery. Therefore it
can be regarded as the amount of money, we would be willing to pay for the lottery.

Note that u−1 exists if u is strictly increasing.

Risk-premium If u is risk-averse, we have

u−1
(
E
(
u(L)

))
≤ u−1

(
u
(
E(L)

))
= E(L).

The difference
γ(L) = E(L)− u−1

(
E
(
u(L)

))
> 0,

is called risk-premium.

Example 8 (Portfolio optimisation). From the mean-variance portfolio theory we know that all
efficient portfolios lie on the capital market line (CML). However we cannot decide which of these
efficient portfolios is optimal. Utility theory can answer this question. Let’s assume the following
simplified setting:

With an initial wealth of 1, we have

• Portion w0 invested risk-free with a rate of µ0 = 10%, i.e. a payoff of P0 = 1.1.

• Portion 1− w0 invested in the risky market portfolio with payoff

P1 =
{

2 50%,
1/2 50%.

We choose a risk-averse utility function for the payoff u(x) = log(x) and look for the optimal value
of w0:

max
w0≤1

E
(
u
(
w0P0 + (1− w0)P1

))
.

To compute the expected utility, we first state it as a random variable:

u
(
w0P0 + (1− w0)P1

)
=
{

log
(
1.1w0 + 2(1− w0)

)
, probability 50%,

log
(
1.1w0 + 0.5(1− w0)

)
, probability 50%.

Thus it’s expectation is given as

E
(
u
(
w0P0 + (1− w0)P1

))
= 1

2 log
(
2− 0.9w0

)
+ 1

2 log
(
0.5 + 0.6w0

)
= 1

2 log
((

2− 0.9w0
)(

0.5 + 0.6w0
))
,

where we used the basic logarithmic law log(a·b) = log(a)+log(b). Since the logarithm is monotonic
increasing, this is equivalent to maximising(

2− 0.9w0
)(

0.5 + 0.6w0
)
,

which is again equivalently to maximising(
20− 9w0

)(
5 + 6w0

)
= −54w2

0 + 75w0 + 100.

The graph of this function is a parabola with opening to the bottom. Therefore we find the maximum
as the root of the first derivative:

0 = d
dw0

(
−54w2

0 + 75w0 + 100
)

= −108w0 + 75,
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which yields
w0 = 75/108 ≈ 69%.

Thus our expected utility is maximised with 69% of our money being invested risk-free and 31% in
the market portfolio.

As a comparison, we can see if we can maximise the expected payoff:

E
(
w0P0 + (1− w0)P1

)
= 1

2(2− 0.9w0) + 1
2(0.5 + 0.6w0)

= 1.25− 0.15w0 →∞, for w0 → −∞.

The expected payoff can be arbitrarily large, but the (risk-averse) expected utility is bounded.

8 Behavioural Finance (Week 11)
Behavioural finance is a modern extension of classical market models, taking into account the
irrationality of the market participants.

Two examples are the following:
Example 9 (Allais paradox). Named after Maurice Allais, who published it in 1953.

Consider two different situations, each of them being the choice between two lotteries.
Situation 1:

Lottery 1A:
{

£1 000 000, probability 100%.

vs.

Lottery 1B:


£1 000 000, probability 89%,
£5 000 000, probability 10%,
£0, probability 1%.

Most people prefer Lottery 1A over Lottery 1B
Situation 2:

Lottery 2A:
{

£1 000 000, probability 11%,
£0, probability 89%,

vs.

Lottery 2B:
{

£5 000 000, probability 10%,
£0, probability 90%.

Most people prefer Lottery 2B over Lottery 2A.
Can we explain this using utility theory?
Let’s assume we have a utility function u that explains this choice. The choice L1A vs. L1B

yields

u(£1m) > 0.89u(£1m) + 0.1u(£5m) + 0.01u(£0) (1)

The choice L2B vs L2A yields

0.1u(£5m) + 0.9u(£0) > 0.11u(£1m) + 0.89u(£0),

which yields
0.01u(0) > 0.11u(£1m)− 0.1u(£5m)

Inserting in (1) yields

u(£1m) > 0.89u(£1m) + 0.1u(£5m) + 0.11u(£1m)− 0.1u(£5m) = u(£1m),

which is a contradiction.
We see that the choice made by most people cannot be explained by classical utility theory. The

reason is a different reception of small probabilities compared to larger ones (i.e. the difference
between 0% and 1% is a lot more significant different than the difference between 89% or 90%)
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Example 10 (Different perception of gains and losses). Again, we consider two different scenarios.
Situation 1: You receive £1 000 and have two options:

Lottery 1:
{

£500, probability 100%.

vs.

Lottery 2:
{

£1, 000, probability 50%,
£0, probability 50%.

Most people prefer L1 over L2 (risk-averse).
Situation 2: You receive £2 000 and have two options:

Lottery 1:
{
−£500, probability 100%.

vs.

Lottery 2:
{
−£1, 000, probability 50%,
£0, probability 50%.

Most people prefer L2 over L1 (risk-seeking).
Although the final outcome is exactly the same in both cases:

Lottery 1:
{

£1 500, probability 100%.

vs.

Lottery 2:
{

£1 000, probability 50%,
£2 000, probability 50%,

the choice of many people depend on a reference point (here £1 000 or £2 000).
Also we see that gains and losses are valued with a different risk attitude:

• risk-seeking for losses, and

• risk-averse for profits.

One way to incorporate these effects is the cumulative prospect theory (CPT) It has three main
features:

• A reference point in wealth, defining profits and losses (framing)

• S-shaped utility functions, i.e. functions that are (locally) concave for profits and (locally)
convex for losses, e.g.

• A non-linear transformation of the probability measure which increases the weight of small
probabilities.

For more informations, see, e.g. Xun Yu Zhou - Mathematicalising Behavioural Finance, 2010.
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