

MTH786U/P, Semester A, 2023/24 Coursework 0

N. Perra

Problem 1

1. Compute the gradient ∇L of the function $L: \mathbb{R}^2_+ \to \mathbb{R}$ defined as

$$L(x,y) = \frac{x}{y} - 1 - \log\left(\frac{x}{y}\right)$$
.

Here \mathbb{R}^2_+ is the space of all real two-dimensional vectors with positive entries.

2. Show that L from Question 1 is scalar-invariant, i.e. L(x,y) = L(cx,cy) for any scalar c > 0 and all arguments x > 0, y > 0.

Problem 2

1. Compute the expected value \mathbb{E}_x of a (discrete) Poisson-distributed random variable X with probability

$$\rho_x := \exp(-\lambda) \frac{\lambda^x}{x!}, \quad x = 0, 1, 2, \dots, s$$

for a constant $\lambda > 0$. What is the solution for $s \to \infty$?

Hint: Make use of the identity $\exp(\lambda) = \sum_{x=0}^{\infty} \frac{\lambda^x}{x!}$.

2. For a uniform (and absolutely continuous) random variable X in [0,1] compute the expectation of f(X) for

$$f(x) := \begin{cases} -\log(x) & x \in [0, 1/5] \\ 0 & \text{otherwise} \end{cases},$$

Make use of the convention $0 \log(0) = 0$.

Problem 3

1. Let X be a random variable with expectation μ and variance σ^2 . Show that the variance of aX + b, where $a, b \in \mathbb{R}$, is

$$Var_x[ax+b] = a^2\sigma^2.$$