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Question 1. [10 marks] Let x be a real number such that x # 1. Use mathematical
induction to prove that

xt—1

x4 =
x—1

for every natural number n > 1.

Question 2. [13 marks]
(a) Give the definition of a partition of a set X.
(b) Write down:

(i) aset X, and a relation on X which is neither symmetric nor transitive.

(i1) a partition of Z in which every part has cardinality two.

(c) Let {A;,A,...} be a partition of a set X. Prove that the relation R on X
defined by

xRy if and only if there is some i such that x € A; and y € A;

is an equivalence relation.

Question 3. [21 marks]

(a) Use Euclid’s algorithm to find the greatest common divisor of 288 and 111.
Show all your working.

(b) Does the equation 288x+ 111y = 6 have a solution where x and y are
integers? Find one if so, showing your working, or explain why not if not.

(c) Define what it means for an element of a ring to be a unit.

(d) Is [111],8g a unit in the ring Zy33? Why?
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Question 4. [14 marks] Let H= {a+ 3/ : o, € C} be the set of quaternions.

Define a function ¢ : H — M;(C) by
) o
o+ =(% 5).
(a) Write down the definition of multiplication for quaternions.

(b) Prove that ¢(q-r) = ¢(q) - ¢(r) for any two quaternions ¢, r € H.

(c) Prove that @ is an injective function.

(d) Use parts (b) and (c) to prove that the quaternions satisfy the associative law

for multiplication. You may assume that M (C) is a ring.

Question 5. [14 marks]
(a) Let R be a ring. Define what it means for R to be

(i) a commutative ring;

(i) a skewfield.

Give the full statement of any axioms you invoke.

(b) Let R be aring. Prove from the axioms that a- 0 = 0 for any a € R.

(c) Let R be aring, and a € R an element such that a* = 0. Must it be true that

a = 0? Justify your answer.

Question 6. [14 marks]

(a) Let G and H be groups, with respective operations o and *. Define what it

means for

(i) G to be a subgroup of H;
(i) G and H to be isomorphic.

(b) Prove that
{a?/b* : a and b are nonzero integers}

is a subgroup of the multiplicative group Q™.

(c) Suppose that G is a nonabelian group and H is an abelian group. With
reference to the definition, explain why G and H cannot be isomorphic.
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Question 7. [14 marks] Let g be the element
(1310)(2512)(467119)

of S12, written in cycle notation, and let 4 be the element

9
9

1 2 34 5 6 7 8
2 1 8 7 6

10 11 12
4 12 5 3 10 11

of S1,, written in two-line notation.
(a) Write g in two-line notation.
(b) Compute (gh)_l and write your answer in cycle notation.
(c) Define the order of an element of a group.

(d) What is the order of /?

End of Paper.
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