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Question 1.

(a) Let g be the element(
1 2 3 4 5 6 7 8 9 10
6 2 10 5 4 9 1 7 3 8

)
of S10, written in two-line notation. Write g in cycle notation. [3]

(b) What are the fixed points of g? [2]

(c) Find an element h of S10 such that

h ◦ g = (1 8 10 2 7 3 6 4),

and write it in two-line notation. [6]

(d) Does S10 contain an element of order 30? If so, specify one. If not, explain
why. [4]

Question 2.

(a) State the Fundamental Theorem of Algebra. [3]

(b) Find all solutions to the complex polynomial equation

z4 + 8− 8
√

3i = 0,

and write them in standard form a + bi. [9]

Question 3.

(a) Give a complete definition of what it means for a set G with an operation ◦ to
be a group. [3]

(b) Write out the Cayley table for the multiplicative group Z×8 . [3]

(c) Does the additive group Z30 have a subgroup of order 4? Specify one if so, or
explain why if not. [4]
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Question 4.

(a) State the names of the axioms that must hold of a set R with operations +
and · in order for R to be a ring. [3]

(b) Define what it means for an element of a ring with identity to be a unit. [2]

(c) Is 2− 2t a unit in the ring D of pseudocomplex numbers? Justify your
answer. [4]

(d) Let a be an element of a ring R with identity such that an = 0 for some
natural number n. Prove that 1− a is a unit in R. [5]

Question 5.

(a) Give complete definitions of the terms

(i) Cartesian product of two sets; [2]

(ii) relation on a set; [2]

(iii) equivalence relation on a set. [3]

(b) Write down examples of:

(i) a relation which is transitive but not reflexive; [2]

(ii) an equivalence relation on {1, 2, 3, 4} with exactly three equivalence
classes. [2]

(c) Let X and Z be any two sets, and f : X → Z any function. Prove that

{(x, y) ∈ X2 : f(x) = f(y)}

is an equivalence relation on X . [6]

Question 6.

(a) Using the Euclidean algorithm, show that gcd(68, 183) = 1. [6]

(b) Does [68]183 have a multiplicative inverse in the ring Z183? Find it if so, or
explain why if not. [8]

(c) Prove that Zm is not a field if m is a composite number. (You may assume
that Zm is a ring, and that its operations are well-defined, but do not use other
facts about Zm without proof.) [6]
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Question 7. Let T be the set of real numbers. Consider T as an algebraic structure
with addition operation ⊕ and multiplication operation � given by

x⊕ y = min{x, y},
x� y = x + y − 2.

(a) Name the identity element in T for the operation �, and prove the inverse
law for �. [4]

(b) Prove the distributive law in T . [Hint: consider two cases x ≤ y, x > y.] [3]

(c) Prove that the set T with addition ⊕ and multiplication � is not a ring. [5]

End of Paper.
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