1.

(a) The largest number seen after $t+1$ rolls depends only on the largest number we have seen after t rolls and the value of the $(t+1)$ th roll. This means that the Markov property is satisfied: if I know X_{t}, the distribution of X_{t+1} is determined and it does not depend on X_{t-1}, X_{t-2}, \ldots.
(b) The state space is $\{1,2,3,4,5,6\}$ (these are the possible values that each random variable X_{t} can take).
Suppose that $X_{t}=i$. If my next roll is one of the i numbers in $\{1, \ldots, i\}$ then $X_{t+1}=i$. If my next roll is j for some j in $\{i+1, \ldots, 6\}$ then $X_{t+1}=j$. So the transition probabilties are:

$$
p_{i j}= \begin{cases}\frac{i}{6} & \text { if } i=j \\ \frac{1}{6} & \text { if } i<j \\ 0 & \text { if } i>j\end{cases}
$$

The transition graph is

(Where all of the unlabelled arrows have transition probability $\frac{1}{6}$.)
The transition matrix is

$$
\left(\begin{array}{cccccc}
1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 \\
0 & 2 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 \\
0 & 0 & 3 / 6 & 1 / 6 & 1 / 6 & 1 / 6 \\
0 & 0 & 0 & 4 / 6 & 1 / 6 & 1 / 6 \\
0 & 0 & 0 & 0 & 5 / 6 & 1 / 6 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

(c) The only thing that changes in the analysis is that the transition probabilities when I am using the biased die may be different. This process is still a Markov chain but it is not homogeneous.
(d) Suppose that $X_{t}=i$. Then I know that the number rolled on roll t was one of the numbers in $\{1, \ldots, i\}$. If I roll one of the other $i-1$ numbers in this set then $X_{t+1}=i$. If my next roll is j for some j in $\{i+1, \ldots, 6\}$ then $X_{t+1}=j$. None of this depends on X_{t-1}, X_{t-2}, \ldots so this is still a (homogeneous) Markov chain. The transition probabilties are:

$$
p_{i j}=\left\{\begin{array}{cl}
\frac{i-1}{5} & \text { if } i=j \\
\frac{1}{5} & \text { if } i<j \\
0 & \text { if } i>j
\end{array}\right.
$$

(e) This time the Markov property will fail. For example, if $X_{1}=1$ and $X_{2}=2$ then my first two rolls must have been a 1 followed by a 2 . Under these circumstances the third roll cannot be a 4 . So,

$$
\mathbb{P}\left(X_{3}=4 \mid X_{2}=2, X_{1}=1\right)=0
$$

However, if $X_{1}=2$ and $X_{2}=2$ then my first two rolls may have been a 2 followed by a 1 . Under these circumstances the third roll can be a 4 :

$$
\mathbb{P}\left(X_{3}=4 \mid X_{2}=2, X_{1}=2\right) \neq 0
$$

This is enough to show that the Markov property fails but if you want to work out the last probability exactly it is:

$$
\begin{aligned}
\mathbb{P}\left(X_{3}=4 \mid X_{2}=2, X_{1}=2\right) & =\frac{\mathbb{P}\left(X_{3}=4, X_{2}=2, X_{1}=2\right)}{\mathbb{P}\left(X_{2}=2, X_{1}=2\right)} \\
& =\frac{\mathbb{P}(\text { first three rolls are } 2,1,4)}{\mathbb{P}(\text { first two rolls are } 2,1 \text { or } 2,2)} \\
& =\frac{1 / 6 \times 1 / 5 \times 1 / 5}{2 \times 1 / 6 \times 1 / 5}=\frac{1}{10}
\end{aligned}
$$

2.

(a) The transition graph is

(b) (i) This is a transition probability so can be read off the matrix (the (2,3)entry)

$$
\mathbb{P}\left(X_{1}=3 \mid X_{0}=2\right)=p_{2,3}=\frac{1}{3}
$$

(ii) This is the same transition probability (because the chain is homogeneous)

$$
\mathbb{P}\left(X_{2}=3 \mid X_{1}=2\right)=p_{2,3}=\frac{1}{3} .
$$

(iii) By the Markov property

$$
\mathbb{P}\left(X_{2}=3 \mid X_{1}=2, X_{0}=1\right)=\mathbb{P}\left(X_{2}=3 \mid X_{1}=2\right)=p_{2,3}=\frac{1}{3}
$$

(iv) We need the probability that starting from state 0 , the chain follows the trajectory given (first step to state 2, next step to state 3). This is the product of transition probabilities:

$$
\mathbb{P}\left(X_{2}=3, X_{1}=2 \mid X_{0}=1\right)=p_{1,2} p_{2,3}=\frac{1}{4} \times \frac{1}{3}=\frac{1}{12} .
$$

(v) Thinking about the possible 2-step paths from state 3 to state 3, this is:

$$
\begin{aligned}
\mathbb{P}\left(X_{2}=3 \mid X_{0}=3\right) & =p_{3,1} p_{1,3}+p_{3,2} p_{2,3}+p_{3,3} p_{3,3} \\
& =\frac{1}{3} \times \frac{3}{4}+\frac{1}{3} \times \frac{1}{3}+\frac{1}{3} \times \frac{1}{3}=\frac{17}{36}
\end{aligned}
$$

Looking at the calculation you did, this is the same as working out the $(3,3)$-entry of the square of the transition matrix. We will see later that this is not a coincidence.
(vi) There is no way that the chain can ever leave state 4 . So if we ever have $X_{k}=4$ then certainly $X_{t}=4$ for all $t \geqslant k$. So

$$
\mathbb{P}\left(X_{1000}=4 \mid X_{0}=4\right)=1
$$

and so

$$
\mathbb{P}\left(X_{1000}=1 \mid X_{0}=4\right)=0
$$

3.

(a) The transition graph is

(b) The states 1 and 4 have the property that once we reach one of them, the chain can never leave. We will see in Week 2 lectures that these states are called absorbing states.
(c) (i) The only way in which we can have $X_{n} \neq 1,4$ is for the process to alternate between states 2 and 3 for n steps. It follows that if n is even

$$
\mathbb{P}\left(X_{n} \neq 1,4 \mid X_{0}=2\right)=p_{2,3} p_{3,2} \ldots p_{2,3} p_{3,2}=\left(p_{2,3}\right)^{\frac{n}{2}}\left(p_{3,2}\right)^{\frac{n}{2}}=\left(\frac{1}{6}\right)^{\frac{n}{2}}
$$

while if n is odd

$$
\mathbb{P}\left(X_{n} \neq 1,4 \mid X_{0}=2\right)=p_{2,3} p_{3,2} \ldots p_{2,3}=\left(p_{2,3}\right)^{\frac{n+1}{2}}\left(p_{3,2}\right)^{\frac{n-1}{2}}=\frac{1}{3}\left(\frac{1}{6}\right)^{\frac{n-1}{2}}
$$

(ii) If $X_{t}=4$ for any $t \leqslant n$ then $X_{n}=4$ since once the process reaches state 4 it can never leave it. It follows that
$\mathbb{P}\left(X_{n}=4 \mid X_{0}=2\right)=\sum_{t=1}^{n} \mathbb{P}($ the process reaches 4 for the first time at step $t)$
We have that
$\mathbb{P}($ the process reaches 4 for the first time at step $t)= \begin{cases}0 & \text { if } n \text { is even } \\ \left(\frac{1}{6}\right)^{\frac{n-1}{2}} \frac{1}{3} & \text { if } n \text { is odd }\end{cases}$
So

$$
\mathbb{P}\left(X_{n}=4 \mid X_{0}=2\right)=\frac{1}{3}+\frac{1}{6} \frac{1}{3}+\left(\frac{1}{6}\right)^{2} \frac{1}{3}+\cdots+\left(\frac{1}{6}\right)^{\left\lfloor\frac{n-1}{2}\right\rfloor} \frac{1}{3} .
$$

Using the formula for the sum of a geometric progression we get

$$
\mathbb{P}\left(X_{n}=4 \mid X_{0}=2\right)= \begin{cases}\frac{2}{5}\left(1-\left(\frac{1}{6}\right)^{\frac{n}{2}}\right) & \text { if } n \text { is even } \\ \frac{2}{5}\left(1-\left(\frac{1}{6}\right)^{\frac{n+1}{2}}\right) & \text { if } n \text { is odd }\end{cases}
$$

(d) As $n \rightarrow \infty$ we have that

$$
\begin{aligned}
& \mathbb{P}\left(X_{n} \neq 1,4 \mid X_{0}=2\right) \rightarrow 0 \\
& \mathbb{P}\left(X_{n}=4 \mid X_{0}=2\right) \rightarrow \frac{2}{5}
\end{aligned}
$$

So the process will eventually leave states 2 and 3 (ending up in either 1 or 4). The probability that it ends up in state 4 is $2 / 5$.

The calculations in this question ended up being rather fiddly. Part of the point of this question was to get used to doing calculations with transition probabilities in a direct way. We will see shortly (Week 2 lectures) a slicker way of working out things like the probability that we end up in state 4 in this example which is both simpler and can be used in more complicated examples.

Please let me know if you have any comments or corrections

Robert Johnson
r.johnson@qmul.ac.uk

