
Exercise sheet 1 solutions

1. We have already seen the formulae for these answers, so we just plug in the numbers.
The MLE is

q̂ =
k

n
=

18

200
= 0.09.

The (estimated) standard error is given by

se(q̂) =

√
q̂(1− q̂)

n
=

√
0.09× (1− 0.09)

200
= 0.0202.

2. The overall likelihood is the joint probability density function

p(t | λ) =
n∏
i=1

λe−λti = λne−λS .

where S =
∑n

i=1 ti.

Hence the log-likelihood is
`(λ; t) = n log(λ)− λS.

Differentiating and setting to zero gives

d`

dλ
=
n

λ
− S = 0.

Hence the MLE is
λ̂ =

n

S
.

For the data in the question, n = 6 and S = 55, so we have

λ̂ =
6

55
= 0.109 days−1.

For the second part, we saw in the lectures that the likelihood function is

p(t | λ) = λme−λS .

where m is the number of deaths we observed. The derivation of the MLE is as above
but with m instead of n, leading to

λ̂ =
m

S
.

Here m = 5 and S has changed to 56, and so

λ̂ =
5

56
= 0.0893 days−1.
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3. The likelihood contribution for each data-point is the normal N(µi, σ
2) pdf. The overall

likelihood is the joint probability density function

p(y | β0, β1, σ) =
n∏
i=1

φ(yi | µi, σ).

where φ(...) is the normal pdf.

The log-likelihood (similar to the normal non-regression example in the lectures, but
with µi instead of µ) is

`(β0, β1, σ; y) = −n log(
√

2π)− n log(σ)− 1

2σ2

n∑
i=1

(yi − µi)2

= −n log(
√

2π)− n log(σ)− 1

2σ2

n∑
i=1

(yi − β0 − β1xi)2

The first derivatives of the log-likelihood are

∂`

∂β0
=

1

σ2

n∑
i=1

(yi − β0 − β1xi)

∂`

∂β1
=

1

σ2

n∑
i=1

xi(yi − β0 − β1xi)

∂`

∂σ
= −n

σ
+

1

σ3

n∑
i=1

(yi − β0 − β1xi)2

Note that setting
∂`

∂β0
= 0 and

∂`

∂β1
= 0 gives the same estimates for β0 and β1 as setting

∂S

∂β0
= 0 and

∂S

∂β1
= 0, where S is the sum of squares S =

∑n
i=1(yi−β0−β1xi)2. Hence

the MLEs β̂0 and β̂1 are the same as the least squares estimates found in Statistical
Modelling 1. However, here we are maximizing the log-likelihood, whereas we minimize
S.

The details for these two parameters are as follows.

∂`

∂β0
= 0 =⇒

n∑
i=1

yi − nβ0 − β1
n∑
i=1

xi = 0 =⇒ ȳ − β0 − β1x̄ = 0

So β̂0 = ȳ − β̂1x̄.

∂`

∂β1
= 0 =⇒

n∑
i=1

xiyi−nβ0
n∑
i=1

xi−β1
n∑
i=1

x2i = 0 =⇒ 1

n

n∑
i=1

xiyi−β0x̄−
β1
n

n∑
i=1

x2i = 0
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Substituting β̂0 = ȳ − β̂1x̄ gives

1

n

n∑
i=1

xiyi − (ȳ − β̂1x̄)x̄− β̂1
n

n∑
i=1

x2i = 0

β̂1 =
1
n

∑n
i=1 xiyi − x̄ȳ

1
n

∑n
i=1 x

2
i − x̄2

This value can then be substituted into β̂0 = ȳ − β̂1x̄.

Then these values can both be substituted into
∂`

∂σ
= 0 to give MLE

σ̂2 =
1

n

n∑
i=1

(yi − β̂0 − β̂1xi)2.

As with the non-regression normal example, the MLE σ̂2 has a factor 1/n, whereas the
unbiased estimate of σ2 which you came across in Statistical Modelling 1 has a factor
1/(n− 2) for this regression model with one covariate.
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