Exercise sheet 1 solutions

1. We have already seen the formulae for these answers, so we just plug in the numbers. The MLE is

$$
\hat{q}=\frac{k}{n}=\frac{18}{200}=0.09 .
$$

The (estimated) standard error is given by

$$
s e(\hat{q})=\sqrt{\frac{\hat{q}(1-\hat{q})}{n}}=\sqrt{\frac{0.09 \times(1-0.09)}{200}}=0.0202 .
$$

2. The overall likelihood is the joint probability density function

$$
p(t \mid \lambda)=\prod_{i=1}^{n} \lambda e^{-\lambda t_{i}}=\lambda^{n} e^{-\lambda S}
$$

where $S=\sum_{i=1}^{n} t_{i}$.
Hence the log-likelihood is

$$
\ell(\lambda ; t)=n \log (\lambda)-\lambda S
$$

Differentiating and setting to zero gives

$$
\frac{d \ell}{d \lambda}=\frac{n}{\lambda}-S=0
$$

Hence the MLE is

$$
\hat{\lambda}=\frac{n}{S} .
$$

For the data in the question, $n=6$ and $S=55$, so we have

$$
\hat{\lambda}=\frac{6}{55}=0.109 \mathrm{days}^{-1} .
$$

For the second part, we saw in the lectures that the likelihood function is

$$
p(t \mid \lambda)=\lambda^{m} e^{-\lambda S}
$$

where m is the number of deaths we observed. The derivation of the MLE is as above but with m instead of n, leading to

$$
\hat{\lambda}=\frac{m}{S} .
$$

Here $m=5$ and S has changed to 56 , and so

$$
\hat{\lambda}=\frac{5}{56}=0.0893 \text { days }^{-1} .
$$

3. The likelihood contribution for each data-point is the normal $N\left(\mu_{i}, \sigma^{2}\right)$ pdf. The overall likelihood is the joint probability density function

$$
p\left(y \mid \beta_{0}, \beta_{1}, \sigma\right)=\prod_{i=1}^{n} \phi\left(y_{i} \mid \mu_{i}, \sigma\right) .
$$

where $\phi(\ldots)$ is the normal pdf.
The log-likelihood (similar to the normal non-regression example in the lectures, but with μ_{i} instead of μ) is

$$
\begin{aligned}
\ell\left(\beta_{0}, \beta_{1}, \sigma ; y\right) & =-n \log (\sqrt{2 \pi})-n \log (\sigma)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\mu_{i}\right)^{2} \\
& =-n \log (\sqrt{2 \pi})-n \log (\sigma)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
\end{aligned}
$$

The first derivatives of the log-likelihood are

$$
\begin{aligned}
\frac{\partial \ell}{\partial \beta_{0}} & =\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right) \\
\frac{\partial \ell}{\partial \beta_{1}} & =\frac{1}{\sigma^{2}} \sum_{i=1}^{n} x_{i}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right) \\
\frac{\partial \ell}{\partial \sigma} & =-\frac{n}{\sigma}+\frac{1}{\sigma^{3}} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
\end{aligned}
$$

Note that setting $\frac{\partial \ell}{\partial \beta_{0}}=0$ and $\frac{\partial \ell}{\partial \beta_{1}}=0$ gives the same estimates for β_{0} and β_{1} as setting $\frac{\partial S}{\partial \beta_{0}}=0$ and $\frac{\partial S}{\partial \beta_{1}}=0$, where S is the sum of squares $S=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}$. Hence the MLEs $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ are the same as the least squares estimates found in Statistical Modelling 1. However, here we are maximizing the log-likelihood, whereas we minimize S.

The details for these two parameters are as follows.

$$
\frac{\partial \ell}{\partial \beta_{0}}=0 \Longrightarrow \sum_{i=1}^{n} y_{i}-n \beta_{0}-\beta_{1} \sum_{i=1}^{n} x_{i}=0 \Longrightarrow \bar{y}-\beta_{0}-\beta_{1} \bar{x}=0
$$

So $\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}$.

$$
\frac{\partial \ell}{\partial \beta_{1}}=0 \Longrightarrow \sum_{i=1}^{n} x_{i} y_{i}-n \beta_{0} \sum_{i=1}^{n} x_{i}-\beta_{1} \sum_{i=1}^{n} x_{i}^{2}=0 \Longrightarrow \frac{1}{n} \sum_{i=1}^{n} x_{i} y_{i}-\beta_{0} \bar{x}-\frac{\beta_{1}}{n} \sum_{i=1}^{n} x_{i}^{2}=0
$$

Substituting $\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}$ gives

$$
\begin{gathered}
\frac{1}{n} \sum_{i=1}^{n} x_{i} y_{i}-\left(\bar{y}-\hat{\beta}_{1} \bar{x}\right) \bar{x}-\frac{\hat{\beta}_{1}}{n} \sum_{i=1}^{n} x_{i}^{2}=0 \\
\hat{\beta}_{1}=\frac{\frac{1}{n} \sum_{i=1}^{n} x_{i} y_{i}-\bar{x} \bar{y}}{\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-\bar{x}^{2}}
\end{gathered}
$$

This value can then be substituted into $\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}$.
Then these values can both be substituted into $\frac{\partial \ell}{\partial \sigma}=0$ to give MLE

$$
\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)^{2} .
$$

As with the non-regression normal example, the MLE $\hat{\sigma}^{2}$ has a factor $1 / n$, whereas the unbiased estimate of σ^{2} which you came across in Statistical Modelling 1 has a factor $1 /(n-2)$ for this regression model with one covariate.

