Welcome to MTH6102: Bayesian Statistical Methods

Eftychia Solea

Queen Mary University of London

2023

Lectures

• Three hours of lectures each week:

- Lecture A: Wednesday, 9:00-11:00, G.O. Jones: LT.
- Lecture B: Friday, 11:00-12:00, Bancroft: 2.40.
- Lectures are both on-campus and Q-reviewed.
- Each lecture will contain one or more of the following:
 - lecture slides;
 - hand-written examples;
 - demonstration of R code.

IT classes

IT classes:

- Thursday, 9:00am, Bancroft:1.23 (71) PC Lab
- Thursday, 10:00am, Bancroft:1.23 (71) PC Lab
- You're meant to attend one of these two IT classes, starting this week.
- You will use the statistical software R.
- There will be an R practical to work through each IT class available in QMPlus the previous day.
- These will be a mix of individual questions and answers, plus me or the TA going over examples when there is a desire for this.
- Plus you can ask about non-R material.

ТΑ

- TA: Maria Pintado Serrano
- E-mail: m.f.pintadoserrano@qmul.ac.uk.

Weekly sequence

• The sequence each week is:

- Lecture A: Wednesday, 9:00-11:00, G.O.Jones:LT.
- Lecture B: Friday, 11:00-12:00, Bancroft:2.40.
- IT class: Thursday (starting in week 1).
- Office hours: Wednesday, 14:45-15:45pm, room MB-324 (starting in week 2).
- Plus an exercise sheet to work through each week for practice (not to be handed in) and you can ask about it in IT sessions.

Lecture notes and course website

- All course material can be found on QMPlus.
- Slides will be put on QMPlus before each lecture.
- There is a more formal set of notes (single pdf file) on QMPlus.
- This sometimes has more formal proofs and definitions than the lectures.
- Please, be sure to visit QMPlus early and often.

Discussion forum

- I encourage you to use the discussion forum.
- A great way to interact online and work together on the assignments.
- You can post any question you have about module's material
- Another student might comment or respond.
- I will respond after one student has commented on the question.
- Please post the question to the forum before emailing me.

Assessment

We have the following assessment pattern:

- 20% coursework.
- 80% final exam.

Coursework

- There will be 5 sets of exercise sheet questions to be handed in.
- Each one counts for 4% of module total.
- Submit on QMPlus, every two weeks.
- First one, starting in week 2, is due to be handed in by start of week 4, on Monday, 16h Oct at 11:00, based on the first two weeks' material.
- Assignments will not be accepted past the time they are due.
- Assignment must be done individually.
- See Assessment Information section on QMPlus page.

Exam

- Entirely written, not computer-based, in January 2024.
- You are allowed to bring 3 pages of A4 notes.
- You could also bring a non-programmable calculator.
- **Past exam papers:** There are 4 past exam papers available on QMPlus, as this is the fifth year the module has run.

Reading list

- Bayesian Statistics: An Introduction, 2014 (4th ed.) by P M Lee.
- All of statistics, 2011 by Larry Wasserman (Chapters 11 and 24).
- Computational Bayesian Statistics, 2019 by M. Antonia Amaral Turkman, Carlos Daniel Paulino and Peter Mulller.
- Bayesian Data Analysis, 2013 (3rd edition) by A Gelman, J B Carlin, H S Stern and D B Rubin.
- A First Course in Bayesian Statistical Methods, 2009 by Hoff, Peter D.

- This course is an introduction to Bayesian statistics
- There are two main approaches to statistical learning: frequentist statistics, or classical and Bayesian statistics.
- So far at Queen Mary, the statistics for inference and estimation has been in the frequentist, or classical.
- Bayesian statistics is an alternative approach-attempts to treat all statistical inference as probabilistic inference
- It has some advantages that we will mention later.
- It is also becoming more commonly used, especially for more complex modelling work.

- Probability is a way to describe the likelihood of an uncertain event in advance, before we observe whether it happens or not.
- Let A be an event, then the probability that A will occur is written as P(A)

P(A) = probability that A will occur.

- P(A) = 1 means that the event will definitely happen. P(A) = 0 means that the event will definitely not happen.
- What is the meaning of probabilities between 0 and 1?

First interpretation: Relative Frequency

 If the experiment can be repeated potentially infinitely many times, then the probability of an event can be defined through relative frequencies.

P(A)=the proportion of the time that A occurs in the long run, if the experiment is repeated under identical conditions.

- For example, suppose the experiment is to toss a coin, and suppose the event *A* is head.
- Then, P(A) = 0.5 means that, if we were to toss the coin a very large number of times, the proportion of tosses we observe heads tends to 0.5 or 50% as the number of tosses increases.

First interpretation: Relative Frequency

- Example. Using computer, we can simulate tosses of a fair coin.
- We obtain the following frequency table:

tosses	head	proportion
10	3	0.3
100	61	0.61
1000	481	0.481
10,000	4966	0.4966
100,000	50,022	0.5002
1,000,000	500,456	0.500

- As the number of tosses increases, the proportion of the time that head occurs gets closer and closer to 0.5
- This verifies the claim that P(A) = 0.5.

First interpretation: Relative Frequency

Comments on the Relative Frequency interpretation

- This is the most widely accepted interpretation of probability.
- It is regarded as **objective**, because answers can be verified (e.g., by computer simulation).
- This interpretation makes sense for experiments that can be repeated under similar conditions.
- It does not make as much sense for special or one-time situations that cannot be repeated.

Classical statistics or frequentist statistics use the Relative Frequency interpretation of probability. Probabilities are viewed as limiting relative frequencies.

• The personal or subjective probability interpretation is

P(A) = degree to which an individual believes that A is going to happen

- This value will obviously differ from one person to another.
- Individual's probabilities may differ because
 - they have varying amounts and kinds of knowledge
 - people are not equally good at assessing uncertainty.

Example

- A report by the Environmental Protection Agency: "Global warming is most likely to raise sea level 15 cm by 2050 and 34 cm by 2100...There is a 1% chance that global warming will raise sea level 1 meter in the next 100 years."
- Senator John Kerry (March 17, 2006): "I can say to absolute certainty that if things stay exactly as they are today...within the next thirty years, the Arctic ice sheet is gone...If that melts, you have a level of sea level increase that wipes out Boston harbor, New York harbor."
- This does not refer to any limiting frequency. It reflects different strengths of beliefs about global warming.

Comments on the Personal or Subjective Probability interpretation

- For evaluating the risks of rare or one-time events, this may be the only way
- Many subjective probabilities are simply an individual's statement of personal beliefs and biases

Bayesian Statistics uses the Personal or Subjective Probability interpretation as a degree of belief.

 Bayesian methods combine expert opinion and evidence to update subjective probabilities. These two different interpretations of probability lead to two schools of statistical inference:

- The frequentist statistics, and the
- The Bayesian statistics.

- This has been the mainstream of statistics for the past century. The frequentist point of view is based on the following
 - F1. Probability refers to limiting relative frequencies. Probabilities are objective frequencies.
 - F2. Parameters are fixed but unknown constants. Because they are not random, no useful probability statements can be made about parameters.
 - F3. Statistical procedures should be designed to have well-defined long-run frequency properties. This is based on the principle of (hypothetical) repeated sampling.

Interval example: Frequentist statistics and inference

- Suppose X₁,..., X_n i.i.d from N(θ, 1). We wish to provide some sort of interval estimate C of θ.
- Frequentist approach. We construct the confidence interval

$$C = [\bar{X} - \frac{1.96}{\sqrt{n}}, \bar{X} + \frac{1.96}{\sqrt{n}}],$$

where \bar{X} is the average of X_1, \ldots, X_n .

Then,

$$P_{ heta}(heta \in C) = 0.95 \quad orall heta \in \mathbb{R}$$
 (1)

- In frequentist approach the statement (1) is about the random interval C which covers θ with probability 0.95, referred to as the confidence level.
- The interval is random because it is a function of the data.
- The parameter is a fixed, unknown quantity.
- The confidence level, 95%, is a property of the procedure over hypothetical repeated samples. It is not a property of any one specific confidence interval.
 - It is NOT correct to say: The true θ lies in C with probability 0.95.
 - A single 95% confidence interval does or does not cover the true value. You don't know whether it does or doesn't.

Example continued

- To make the meaning clearer, suppose we repeat the experiment many times
 - On day 1 you collect data from $\mathcal{N}(\theta, 1)$ and construct a [valid] 95% confidence interval C_1 for θ
 - On day 2 you collect data from $\mathcal{N}(\theta, 1)$ and construct a [valid] 95% confidence interval C_2 for θ

- On day 100 you collect data from $\mathcal{N}(\theta, 1)$ and construct a [valid] 95% confidence interval $C_{\scriptscriptstyle 100}$ for θ
- In the long run, with repeated sampling, the intervals trap the parameter θ 95 percent of the time.

Archery example: Frequentist statistics and inference

Adapted from Gonick & Smith, The Cartoon Guide to Statistics

E. Solea, QMUL

Archery example: Frequentist statistics and inference

You want to learn where the bullseye is

Frequentist statistics and inference

Archery example: Frequentist statistics and inference

The circle traps the truth bullseye's location in 95% of shootings. To define anything frequentist, you have to imagine repeated experiments.

Classical or frequentist statistics: Long-run frequency interpretation

- Statistical procedures should be designed to have well-defined long-run frequency properties. This is based on the principle of (hypothetical) repeated sampling.
- Long-run frequency interpretation. If we could repeat the sampling procedure many times, we would get many intervals, and 95% of them would cover the true value.
- Question: How does Bayesian inference differ?

- B1. Probability describes degree of belief, not limiting frequency. As such, we can make probability statements about lots of things, not just data which are subject to random variation.
- B2. Parameters are viewed as unobserved random variables, for which we can make probability statements.
- B3. We make inferences about a parameter θ by producing a probability distribution for θ . Inferences, such as intervals may be extracted from this distribution.

- **Bayesian approach.** In Bayesian statistics we express our beliefs and uncertainty about the unknown parameter θ using a probability distribution, $p(\theta)$, called the prior distribution.
- In frequentist statistics, we do not have a probability distribution for the parameters
 - only for data we observed, or might have observed.
- This is a characteristic of the Bayesian approach-all unknown parameters are treated as random variables and they are given a prior distribution.

- We then combine this with the observed data $X = x \in \mathbb{R}^n$, $X = (X_1, \dots, X_n)$ to update our beliefs about the parameters.
- Using Baye's theorem

$$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)},$$
(2)

where $p(x|\theta)$ is the likelihood viewed as conditional probability (conditional on the event $\{X = x\}$)

 The Baye's Theorem yields a distribution over θ-the posterior probability of θ given x, p(θ|x)

Interval example: Bayesian approach

• Next, using the posterior one finds an interval C such that

$$\int_{c} p(\theta|x) \, d\theta = 0.95$$

We can report that

$$P(\theta \in C|x) = 0.95 \tag{3}$$

- This a degree-of-belief probability statement about θ given the data. It is not the same as (1).
- Bayesian methods allow to say the true θ lies in C with probability 0.95
- *C* is called a credible interval and has a direct interpretation in terms of probability.

Adapted from Gonick & Smith, The Cartoon Guide to Statistics

E. Solea, QMUL

Archery example: Frequentist statistics and inference

You want to learn where the bullseye is

The parameter of interest θ is the bullseye location.

Archery example: Bayesian approach

You don't know the location exactly, but do have some ideas.

blue shaded region is your prior $p(\theta)$ that describes your beliefs about the plausible values of θ

You don't know the location exactly, but do have some ideas.

What to do when the data comes along?

red shaded region is your likelihood, $p(data|\theta)$, where data is the arrow hit.

Archery example: Bayesian approach

purple region represents the posterior $p(\theta|\text{data})$: your updated beliefs about bullseye location, θ .

Bayesian approach in practice

- During the search for Air France 447, from 2009-2011, knowledge about the black box location was described using Bayesian inference.
- Eventually, the black box was found in the red area.
- For further, see Search for the Wreckage of Air France Flight AF 447

To summarise,

- Bayesian treats probability as beliefs, not frequencies.
- Bayesian inference is a method for stating and updating beliefs.
- A Bayesian perspective requires us to assign a prior probability to θ .
- Bayesian is subjective: Two different Bayesian statisticians may assign different priors to θ, and thus obtain different conclusions.

- Frequentist wishes to avoid such subjectivity.
- The goal of a frequentist approach is to develop an objective statistical theory, in which two statisticians employing the methodology must necessarily draw the same conclusions from a particular data set.
- The idea is to create procedures with long-run frequency guarantees.
- Important features of frequentist approach is the principle of repeated sampling and the frequentist interpretation of probabilities.

	Frequentist	Bayesian
Probability is:	limiting relative frequency	degree of belief, subjective
Parameter θ is	fixed constant	random variable
Probability statements are about:	procedures	parameters
Frequency guarantees	yes	no

- This course will expose you to Bayesian statistical methods for inference and prediction. The emphasis is on methodologies with some theory and applications.
- In particular, we will study
 - Prior distributions; conjugate priors; non-informative priors.
 - Point estimates, credible intervals.
 - Markov chain Monte Carlo.
 - Model selection.
 - Predictive distributions.
 - Missing data; hierarchical models.

This week lectures will also cover:

- Likelihood.
- Maximum likelihood estimator (MLE).
- We start Bayesian inference next week.

- Let Y be a random variable (discrete/continuous) with probability distribution $p(y|\theta)$.
- Let Y_1, \ldots, Y_n be a sample from the population $p(y|\theta)$
- In frequentist statistic, the idea is to construct various estimators of θ , and choose the best estimator according to some criteria (bias, variance).
- A point estimator is any function $W(Y_1, \ldots, Y_n)$ of the sample.
- **Important:** An estimator is itself a random variable since a new experiment will produce new data to compute it.

- There is one particular estimator that is widely used in frequentist statistics, namely the maximum likelihood estimator (MLE).
- This estimator is popular because if often yields natural estimators (sample mean and sample proportion) and has favourable asymptotic properties.
- To understand the MLE, we must understand the notion of likelihood from which it derives.
- The concept of likelihood is also needed for Bayesian statistics.

Definition 1 (The Likelihood function)

Let $p(y|\theta)$ denote the joint probability density (pdf) or probability mass function (pmf) of the sample $Y = (Y_1, \ldots, Y_n)$. Then, given that Y = y is observed, the function of θ defined by

$$\mathcal{L}(heta|y) = p(y| heta)$$

is called the likelihood function

- If Y = y is discrete, then $\mathcal{L}(y|\theta) = P_{\theta}(Y = y)$.
- We treat $p(y | \theta)$ as function of θ for fixed y, and provides the basis for maximum likelihood estimation.

- Suppose we toss a (biased) coin that has probability q of showing heads.
- We toss it n times.
- Then the number of heads X is binomially distributed

$$X \sim Bin(n,q)$$

- Suppose we observe k heads (i.e. X = k).
- What is the likelihood function?

- The data is discrete the number of heads.
- So the likelihood is the Binomial probability mass function.
- For a given value of q, the probability that X = k is

$$p(k \mid q) = P(X = k) = \binom{n}{k} q^k (1-q)^{n-k}$$

• So if we observe k heads, the likelihood is

$$\mathcal{L}(q|k) = p(k \mid q) = \binom{n}{k} q^k (1-q)^{n-k}$$

Binomial likelihood

- Suppose we want to estimate parameters θ .
- As suggested in Figure, the likelihood can be used to evaluate choices of θ .

 Density A assigns higher probability to the observed data x than density B, and thus would be preferred according to the principle of maximum likelihood. • Idea: Pick that value of θ that makes the observed sample x most probable

Definition 2: Maximum likelihood Estimators

For each sample point $y = (y_1, \ldots, y_n)$, find the value of θ which maximizes the likelihood function as a function of θ (with y held fixed)

 $\hat{\theta}_{\text{ML}}(y) = \operatorname{argmax}_{\theta \in \Theta} \mathcal{L}(\theta|y),$

where Θ is the range of the parameter θ . The estimator $\hat{\theta}_{ML}(Y_1, \ldots, Y_n)$ based on the sample is known as the maximum likelihood estimator, or MLE.

- When finding the MLE, it is easier to work with the log of the likelihood.
- The log function is monotonically increasing.
- So the same θ will maximize $\mathcal{L}(\theta|y)$ and $\log \mathcal{L}(\theta|y)$.
- The log-likelihood is denoted by

 $\ell(\theta; y) = \log \mathcal{L}(\theta|y).$

Binomial log-likelihood

$$\ell(q;k) = \log \binom{n}{k} + k \log(q) + (n-k) \log(1-q)$$

Plotted as a function of *q*. Here,

Binomial MLE

n = 40k = 12

- If 0 < k < n, differentiating $\ell(q; k)$ with respect to q and setting the result equal to 0, gives $\hat{q} = \frac{k}{n} = 0.3$
- Maximum likelihood estimator (MLE) is $\hat{q} = \frac{X}{n}$

- To check that we have found a maximum, we can calculate the second derivatives.
- For the binomial example, as $q \to 0$ or 1, $\ell \to -\infty$.
- So the stationary point must be a global maximum, and hence the MLE is $\hat{q} = \frac{X}{n}$.

A coin is taken from a box containing three coins, which gives heads with probability q = 1/3, q = 1/2, and q = 2/3. The mystery coin is tossed 80 times, resulting in 49 heads and 31 tails.

- What is the likelihood of this data for each type of coin? Which coin gives the maximum likelihood?
- Now suppose that we have a single coin with unknown probability *q* of landing heads. Find the likelihood and log likelihood functions given the same data. What is the MLE for *q*?

Work from scratch. Set the problem by defining random variables and pmf.

Example: Light bulbs

- The time until failure for a type of light bulb is exponentially distributed with parameter λ.
- We tested *n* bulbs and observe independently failure times $t = (t_1, \ldots, t_n)$.
- The unknown parameter is λ .
- Find the likelihood function and the log likelihood function
- ${\scriptstyle \odot}$ Find the MLE for λ

Suppose 5 bulbs are tested and have lifetimes of 2, 3, 1, 3, 4 years, respectively.

• Find the MLE of λ .

Work from scratch. Set the problem by defining random variables and pmf.