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Outline of the course

Lectures

Three hours of lectures each week:

Lecture A: Wednesday, 9:00-11:00, G.O.Jones:LT.

Lecture B: Friday, 11:00-12:00, Bancroft: 2.40.

Lectures are both on-campus and Q-reviewed.

Each lecture will contain one or more of the following:

lecture slides;

hand-written examples;

demonstration of R code.
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Outline of the course

IT classes

IT classes:

Thursday, 9:00am, Bancroft:1.23 (71) PC Lab

Thursday, 10:00am, Bancroft:1.23 (71) PC Lab

You’re meant to attend one of these two IT classes, starting this

week.

You will use the statistical software R.

There will be an R practical to work through each IT class available

in QMPlus the previous day.

These will be a mix of individual questions and answers, plus me or

the TA going over examples when there is a desire for this.

Plus you can ask about non-R material.
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Outline of the course

TA

TA: Maria Pintado Serrano

E-mail: m.f.pintadoserrano@qmul.ac.uk.
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Outline of the course

Weekly sequence

The sequence each week is:

• Lecture A: Wednesday, 9:00-11:00, G.O.Jones:LT.

• Lecture B: Friday, 11:00-12:00, Bancroft:2.40.

• IT class: Thursday (starting in week 1).

• Office hours: Wednesday, 14:45-15:45pm, room MB-324 (starting in

week 2).

Plus an exercise sheet to work through each week for practice (not

to be handed in) and you can ask about it in IT sessions.
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Outline of the course

Lecture notes and course website

All course material can be found on QMPlus.

Slides will be put on QMPlus before each lecture.

There is a more formal set of notes (single pdf file) on QMPlus.

This sometimes has more formal proofs and definitions than the

lectures.

Please, be sure to visit QMPlus early and often.
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Outline of the course

Discussion forum

I encourage you to use the discussion forum.

A great way to interact online and work together on the assignments.

You can post any question you have about module’s material

Another student might comment or respond.

I will respond after one student has commented on the question.

Please post the question to the forum before emailing me.
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Outline of the course

Assessment

We have the following assessment pattern:

20% coursework.

80% final exam.
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Outline of the course

Coursework

There will be 5 sets of exercise sheet questions to be handed in.

Each one counts for 4% of module total.

Submit on QMPlus, every two weeks.

First one, starting in week 2, is due to be handed in by start of week

4, on Monday, 16h Oct at 11:00, based on the first two weeks’

material.

Assignments will not be accepted past the time they are due.

Assignment must be done individually.

See Assessment Information section on QMPlus page.
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Outline of the course

Exam

Entirely written, not computer-based, in January 2024.

You are allowed to bring 3 pages of A4 notes.

You could also bring a non-programmable calculator.

Past exam papers: There are 4 past exam papers available on

QMPlus, as this is the fifth year the module has run.
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Outline of the course

Reading list

Bayesian Statistics: An Introduction, 2014 (4th ed.) by P M Lee.

All of statistics, 2011 by Larry Wasserman (Chapters 11 and 24).

Computational Bayesian Statistics, 2019 by M. Antonia Amaral

Turkman, Carlos Daniel Paulino and Peter Mulller.

Bayesian Data Analysis, 2013 (3rd edition) by A Gelman, J B Carlin,

H S Stern and D B Rubin.

A First Course in Bayesian Statistical Methods, 2009 by Hoff, Peter

D.
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Module overview

This course is an introduction to Bayesian statistics

There are two main approaches to statistical learning: frequentist

statistics, or classical and Bayesian statistics.

So far at Queen Mary, the statistics for inference and estimation has

been in the frequentist, or classical.

Bayesian statistics is an alternative approach-attempts to treat all

statistical inference as probabilistic inference

It has some advantages that we will mention later.

It is also becoming more commonly used, especially for more

complex modelling work.
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What is a probability?

Probability is a way to describe the likelihood of an uncertain event

in advance, before we observe whether it happens or not.

Let A be an event, then the probability that A will occur is written

as P(A)

P(A) = probability that A will occur.

P(A) = 1 means that the event will definitely happen. P(A) = 0

means that the event will definitely not happen.

What is the meaning of probabilities between 0 and 1?
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First interpretation: Relative Frequency

If the experiment can be repeated potentially infinitely many times,

then the probability of an event can be defined through relative

frequencies.

P(A)=the proportion of the time that A occurs in the long run, if the

experiment is repeated under identical conditions.

For example, suppose the experiment is to toss a coin, and suppose

the event A is head.

Then, P(A) = 0.5 means that, if we were to toss the coin a very

large number of times, the proportion of tosses we observe heads

tends to 0.5 or 50% as the number of tosses increases.
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First interpretation: Relative Frequency

Example. Using computer, we can simulate tosses of a fair coin.

We obtain the following frequency table:

tosses head proportion

10 3 0.3

100 61 0.61

1000 481 0.481

10,000 4966 0.4966

100,000 50,022 0.5002

1,000,000 500,456 0.500

As the number of tosses increases, the proportion of the time that

head occurs gets closer and closer to 0.5

This verifies the claim that P(A) = 0.5.
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First interpretation: Relative Frequency

Comments on the Relative Frequency interpretation

This is the most widely accepted interpretation of probability.

It is regarded as objective, because answers can be verified (e.g., by

computer simulation).

This interpretation makes sense for experiments that can be

repeated under similar conditions.

It does not make as much sense for special or one-time situations

that cannot be repeated.

Classical statistics or frequentist statistics use the Relative Frequency

interpretation of probability. Probabilities are viewed as limiting relative

frequencies.
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Second interpretation: Personal or subjective probability

The personal or subjective probability interpretation is

P(A) = degree to which an individual believes that A is going to happen

This value will obviously differ from one person to another.

Individual’s probabilities may differ because

they have varying amounts and kinds of knowledge

people are not equally good at assessing uncertainty.
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Second interpretation: Personal or subjective probability

Example

A report by the Environmental Protection Agency: “Global warming

is most likely to raise sea level 15 cm by 2050 and 34 cm by

2100...There is a 1% chance that global warming will raise sea level

1 meter in the next 100 years.”

Senator John Kerry (March 17, 2006): “I can say to absolute

certainty that if things stay exactly as they are today...within the

next thirty years, the Arctic ice sheet is gone...If that melts, you

have a level of sea level increase that wipes out Boston harbor, New

York harbor.”

This does not refer to any limiting frequency. It reflects different

strengths of beliefs about global warming.
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Second interpretation: Personal or subjective probability

Comments on the Personal or Subjective Probability interpretation

For evaluating the risks of rare or one-time events, this may be the

only way

Many subjective probabilities are simply an individual’s statement of

personal beliefs and biases

Bayesian Statistics uses the Personal or Subjective Probability

interpretation as a degree of belief.

Bayesian methods combine expert opinion and evidence to update

subjective probabilities.
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Frequentist statistics vs Bayesian statistics

These two different interpretations of probability lead to two schools of

statistical inference:

The frequentist statistics, and the

The Bayesian statistics.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



Frequentist statistics and inference

This has been the mainstream of statistics for the past century. The
frequentist point of view is based on the following

F1. Probability refers to limiting relative frequencies. Probabilities are

objective frequencies.

F2. Parameters are fixed but unknown constants. Because they are not

random, no useful probability statements can be made about

parameters.

F3. Statistical procedures should be designed to have well-defined

long-run frequency properties. This is based on the principle of

(hypothetical) repeated sampling.
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Interval example: Frequentist statistics and inference

Suppose X1, . . . ,Xn i.i.d from N (θ, 1). We wish to provide some sort

of interval estimate C of θ.

Frequentist approach. We construct the confidence interval

C = [X̄ − 1.96√
n
, X̄ +

1.96√
n

],

where X̄ is the average of X1, . . . ,Xn.

Then,

Pθ(θ ∈ C ) = 0.95 ∀θ ∈ R (1)
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Example continued

In frequentist approach the statement (1) is about the random

interval C which covers θ with probability 0.95, referred to as the

confidence level.

The interval is random because it is a function of the data.

The parameter is a fixed, unknown quantity.

The confidence level, 95%, is a property of the procedure over
hypothetical repeated samples. It is not a property of any one
specific confidence interval.

It is NOT correct to say: The true θ lies in C with probability 0.95.

A single 95% confidence interval does or does not cover the true

value. You don’t know whether it does or doesn’t.
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Example continued

To make the meaning clearer, suppose we repeat the experiment
many times

On day 1 you collect data from N (θ, 1) and construct a [valid] 95%

confidence interval C1 for θ

On day 2 you collect data from N (θ, 1) and construct a [valid] 95%

confidence interval C2 for θ

...

On day 100 you collect data from N (θ, 1) and construct a [valid]

95% confidence interval C100 for θ

In the long run, with repeated sampling, the intervals trap the

parameter θ 95 percent of the time.
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Archery example: Frequentist statistics and inference

Adapted from Gonick & Smith, The Cartoon Guide to Statistics
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Archery example: Frequentist statistics and inference

You want to learn where the bullseye is
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Frequentist statistics and inference
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Archery example: Frequentist statistics and inference

The circle traps the truth bullseye’s location in 95% of shootings. To

define anything frequentist, you have to imagine repeated experiments.
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Classical or frequentist statistics: Long-run frequency

interpretation

Statistical procedures should be designed to have well-defined

long-run frequency properties. This is based on the principle of

(hypothetical) repeated sampling.

Long-run frequency interpretation. If we could repeat the

sampling procedure many times, we would get many intervals, and

95% of them would cover the true value.

Question: How does Bayesian inference differ?
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Bayesian approach

B1. Probability describes degree of belief, not limiting frequency. As

such, we can make probability statements about lots of things, not

just data which are subject to random variation.

B2. Parameters are viewed as unobserved random variables, for which we

can make probability statements.

B3. We make inferences about a parameter θ by producing a probability

distribution for θ. Inferences, such as intervals may be extracted

from this distribution.
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Bayesian approach

Bayesian approach. In Bayesian statistics we express our beliefs

and uncertainty about the unknown parameter θ using a probability

distribution, p(θ), called the prior distribution.

In frequentist statistics, we do not have a probability distribution for
the parameters

only for data we observed, or might have observed.

This is a characteristic of the Bayesian approach-all unknown

parameters are treated as random variables and they are given a

prior distribution.
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Bayesian approach

We then combine this with the observed data X = x ∈ Rn,

X = (X1, . . . ,Xn) to update our beliefs about the parameters.

Using Baye’s theorem

p(θ|x) =
p(x |θ)p(θ)

p(x)
, (2)

where p(x |θ) is the likelihood viewed as conditional probability

(conditional on the event {X = x})
The Baye’s Theorem yields a distribution over θ-the posterior

probability of θ given x , p(θ|x)
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Interval example: Bayesian approach

Next, using the posterior one finds an interval C such that∫
C

p(θ|x) dθ = 0.95

We can report that

P(θ ∈ C |x) = 0.95 (3)

This a degree-of-belief probability statement about θ given the data.

It is not the same as (1).

Bayesian methods allow to say the true θ lies in C with probability

0.95

C is called a credible interval and has a direct interpretation in terms

of probability.
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Archery example: Bayesian approach

Adapted from Gonick & Smith, The Cartoon Guide to Statistics
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Archery example: Frequentist statistics and inference

You want to learn where the bullseye is
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Archery example: Bayesian approach

The parameter of interest θ is the bullseye location.
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Archery example: Bayesian approach

You don’t know the location exactly, but do have some ideas.

blue shaded region is your prior p(θ) that describes your beliefs about the

plausible values of θ
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Archery example: Bayesian approach

You don’t know the location exactly, but do have some ideas.
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Archery example: Bayesian approach

What to do when the data comes along?

red shaded region is your likelihood, p(data|θ), where data is the arrow

hit.
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Archery example: Bayesian approach

purple region represents the posterior p(θ|data): your updated beliefs

about bullseye location, θ.
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Bayesian approach in practice

During the search for Air France 447, from 2009-2011, knowledge

about the black box location was described using Bayesian inference.

Eventually, the black box was found in the red area.

For further, see Search for the Wreckage of Air France Flight AF 447
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Bayesian and frequentist statistics

To summarise,

Bayesian treats probability as beliefs, not frequencies.

Bayesian inference is a method for stating and updating beliefs.

A Bayesian perspective requires us to assign a prior probability to θ.

Bayesian is subjective: Two different Bayesian statisticians may

assign different priors to θ, and thus obtain different conclusions.
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Bayesian and frequentist statistics

Frequentist wishes to avoid such subjectivity.

The goal of a frequentist approach is to develop an objective

statistical theory, in which two statisticians employing the

methodology must necessarily draw the same conclusions from a

particular data set.

The idea is to create procedures with long-run frequency guarantees.

Important features of frequentist approach is the principle of

repeated sampling and the frequentist interpretation of probabilities.
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Bayesian and frequentist statistics

Frequentist Bayesian

Probability is: limiting relative frequency degree of belief, subjective

Parameter θ is fixed constant random variable

Probability statements are about: procedures parameters

Frequency guarantees yes no
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Overview of this course

This course will expose you to Bayesian statistical methods for

inference and prediction. The emphasis is on methodologies with

some theory and applications.

In particular, we will study

Prior distributions; conjugate priors; non-informative priors.

Point estimates, credible intervals.

Markov chain Monte Carlo.

Model selection.

Predictive distributions.

Missing data; hierarchical models.
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This week lectures

This week lectures will also cover:

Likelihood.

Maximum likelihood estimator (MLE).

We start Bayesian inference next week.
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MLE and likelihood

Let Y be a random variable (discrete/continuous) with probability

distribution p(y |θ).

Let Y1, . . . ,Yn be a sample from the population p(y |θ)

In frequentist statistic, the idea is to construct various estimators of

θ, and choose the best estimator according to some criteria (bias,

variance).

A point estimator is any function W (Y1, . . . ,Yn) of the sample.

Important: An estimator is itself a random variable since a new

experiment will produce new data to compute it.
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MLE and likelihood

There is one particular estimator that is widely used in frequentist

statistics, namely the maximum likelihood estimator (MLE).

This estimator is popular because if often yields natural estimators

(sample mean and sample proportion) and has favourable

asymptotic properties.

To understand the MLE, we must understand the notion of

likelihood from which it derives.

The concept of likelihood is also needed for Bayesian statistics.
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Formal definition

Definition 1 (The Likelihood function)

Let p(y |θ) denote the joint probability density (pdf) or probability mass

function (pmf) of the sample Y = (Y1, . . . ,Yn). Then, given that Y = y

is observed, the function of θ defined by

L(θ|y) = p(y |θ)

is called the likelihood function

If Y = y is discrete, then L(y |θ) = Pθ(Y = y).

We treat p(y | θ) as function of θ for fixed y , and provides the basis

for maximum likelihood estimation.
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Binomial model

Suppose we toss a (biased) coin that has probability q of showing

heads.

We toss it n times.

Then the number of heads X is binomially distributed

X ∼ Bin(n, q)

Suppose we observe k heads (i.e. X = k).

What is the likelihood function?
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Binomial likelihood

The data is discrete - the number of heads.

So the likelihood is the Binomial probability mass function.

For a given value of q, the probability that X = k is

p(k | q) = P(X = k) =

(
n

k

)
qk(1− q)n−k

So if we observe k heads, the likelihood is

L(q|k) = p(k | q) =

(
n

k

)
qk(1− q)n−k
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Binomial likelihood

Likelihood is

p(k | q) =

(
n

k

)
qk(1− q)n−k

Plotted as a function of q.

Here,

n = 40

k = 12
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Maximum likelihood

Suppose we want to estimate parameters θ.

As suggested in Figure, the likelihood can be used to evaluate

choices of θ.

Density A assigns higher probability to the observed data x than

density B, and thus would be preferred according to the principle of

maximum likelihood.
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Maximum likelihood Estimators

Idea: Pick that value of θ that makes the observed sample x most

probable

Definition 2: Maximum likelihood Estimators

For each sample point y = (y1, . . . , yn), find the value of θ which

maximizes the likelihood function as a function of θ (with y held fixed)

θ̂ML(y) = argmaxθ∈ΘL(θ|y),

where Θ is the range of the parameter θ. The estimator θ̂ML(Y1, . . . ,Yn)

based on the sample is known as the maximum likelihood estimator, or

MLE.
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Log-likelihood

When finding the MLE, it is easier to work with the log of the

likelihood.

The log function is monotonically increasing.

So the same θ will maximize L(θ|y) and logL(θ|y).

The log-likelihood is denoted by

`(θ; y) = logL(θ|y).
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Binomial log-likelihood

`(q; k) = log

(
n

k

)
+ k log(q) + (n − k) log(1− q)

Plotted as a function

of q.

Here,

n = 40

k = 12
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Binomial MLE

n = 40

k = 12

If 0 < k < n,

differentiating

`(q; k) with

respect to q and

setting the result

equal to 0, gives

q̂ = k
n = 0.3

Maximum

likelihood

estimator (MLE)

is q̂ = X
n
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Checking that it’s a global maximum

To check that we have found a maximum, we can calculate the

second derivatives.

For the binomial example, as q → 0 or 1, `→ −∞.

So the stationary point must be a global maximum, and hence the

MLE is q̂ = X
n .
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Board example: Coins

A coin is taken from a box containing three coins, which gives heads with

probability q = 1/3, q = 1/2, and q = 2/3. The mystery coin is tossed

80 times, resulting in 49 heads and 31 tails.

What is the likelihood of this data for each type of coin? Which coin

gives the maximum likelihood?

Now suppose that we have a single coin with unknown probability q

of landing heads. Find the likelihood and log likelihood functions

given the same data. What is the MLE for q?

Work from scratch. Set the problem by defining random variables and

pmf.

E. Solea, QMUL MTH6102: Bayesian Statistical Methods



An example with continuous data

Example: Light bulbs

The time until failure for a type of light bulb is exponentially

distributed with parameter λ.

We tested n bulbs and observe independently failure times

t = (t1, . . . , tn).

The unknown parameter is λ.

Find the likelihood function and the log likelihood function

Find the MLE for λ
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Board example: Light bulbs

Suppose 5 bulbs are tested and have lifetimes of 2, 3, 1, 3, 4 years,

respectively.

Find the MLE of λ.

Work from scratch. Set the problem by defining random variables and

pmf.
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