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Introduction and Motivation

MTH5104 and MTH5105 together form an introduction to analysis, the branch of
mathematics devoted to the precise study of sequences, series, differentiation and
integration. These courses bring rigour to calculus.

Some examples, questions and paradoxes

1. While already ancient Greek mathematicians (such as Archimedes) from the
school of Pythagoras anticipated the integral calculus, they were very reluctant
to use any kind of infinite process. This is best shown by considering a famous
paradox of Zeno (∼ 460 BC), Achilles and the tortoise: If Achilles starts at A
and the tortoise starts at B then Achilles can never catch the tortoise since by
the time Achilles reaches B, the tortoise will be at some further point C, and
by the time Achilles reaches C, the tortoise will be further ahead at D and so
on ad infinitum. So the tortoise will always be ahead!

Let us model this argument with some numbers. (We don’t try to actually
model realistic speeds or distances!) Let us assume the tortoise is at distance 1
from Achilles and moves with speed 1, while Achilles runs with speed 4. When
will he catch the tortoise?

- - -
A B C D

The time needed for Achilles to reach B is 1/4. Hence the tortoise moved 1/4,
i.e. C is 1/4 away from B. So the time for Achilles to reach C is 1/4 + 1/16.
The tortoise has now moved to D which is 1/16 away from C, so the time for
Achilles to reach D is 1/4 + 1/16 + 1/64, etc. So Achilles runs for time

∞∑
k=1

(1

4

)k
=

1

4
+

1

16
+

1

64
+

1

256
+ · · ·

behind the tortoise. But on the other hand, we can also solve this with an
equation: Achilles runs for time t with speed 4, so he will be 4t away from A,
while the tortoise at the same time is 1 + t away from A. So Achilles catches
the tortoise when

4t = 1 + t.

Obviously, the solution of this equation is t = 1/3. The two results contradict
each other if the above infinite sum becomes larger than 1/3. Could it be, that
although we keep on adding positive numbers to the sum, the value of the total
sum is still finite (and actually less than or equal to 1/3)?

Somewhat surprisingly, the answer is yes, in fact

∞∑
k=1

(1

4

)k
=

1

4
+

1

16
+

1

64
+

1

256
+ · · · = 1

3
. (0.1)
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2. Let us now look at the series

∞∑
k=1

1

k
= 1 +

1
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+

1

3
+

1

4
+

1

5
+ · · ·

As before, we infinitely often add a positive number, and the numbers added
become smaller and smaller. Will the sum therefore also converge to a finite
value, as in the example above?

This time, the answer is no! We can see this as follows.

∞∑
k=1

1

k
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1
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+
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+ · · ·
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1
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1

8
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8
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1
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= 1 +
1

2
+

1

2
+

1

2
+

1

2
+ · · ·

=∞

What is different in example 2 from example 1? In this lecture course, we will
develop general tools which allow us to investigate whether or not an infinite
series converges.

3. Of course, (0.1) is nothing else than a geometric series, and we know from
calculus that

∞∑
k=1

(1

4

)k
=

∞∑
k=0

(1

4

)k
− 1 =

1

1− 1
4

− 1 =
1

3
,

using the rule
∑∞

k=0 q
k = 1

1−q (which agrees with what we claimed above).

Using this rule, we have for example

x

1− x
= x

( 1

1− x

)
= x(1 + x+ x2 + . . .) = x+ x2 + x3 + · · · (0.2)

or also
x

x− 1
=
( 1

1− 1
x

)
= 1 + x−1 + x−2 + · · · (0.3)

Adding (0.2) and (0.3) thus yields

0 = . . .+ x−2 + x−1 + 1 + x+ x2 + · · ·

If x > 0, this means that adding up infinitely many positive numbers gives 0.
What is wrong with this argument? The answer is that we have to consider
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for which values of x each series converges. The series on the right hand side
of (0.2) only converges for |x| < 1, the series on the right hand side of (0.3)
only converges for |x| > 1. It becomes clear that we need to define convergence
very carefully and worry about the set of values for which a series converges.

4. The last series we consider in this section is the alternating harmonic series.
It is given by

∞∑
k=1

(−1)k+1 1

k
= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ . . .

As we will see later in this course, this series converges. Intuitively, this is
clear if we draw the first few elements, denoting sn =

∑n
k=1(−1)k+1 1

k , we have
the following picture.

-� -� -
0 s1 = 1s2 s3s4 s5. . . . . .s∞

(One can prove that the value of the infinite series is ln 2, the natural logarithm
of 2.) Now, we will re-order the sequence, taking always a positive element
and then two negative ones, so that we obtain

S := 1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+ . . .

Note that we still have all the elements from the original series, we just changed
the order of summation! As addition is commutative, we might expect that
the value should be the same and the order of summation should not matter.
However, we get

S = (1− 1

2
)− 1

4
+ (

1

3
− 1

6
)− 1

8
+ (

1

5
− 1
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)− 1
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=
1

2
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4
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1

6
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8
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1
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+ · · ·

=
1

2

(
1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·

)
So now, the value of the sum is half of what it was before! How did this
happen? Did we do something wrong? One of the goals of this course is to
answer these questions.

5. Finally, let us move on to some questions related to functions.

• Is the sum of two continuous functions continuous? Yes!
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• Is the sum of infinitely many continuous functions continuous? No! For
example the function

f(x) =
sin(x)

1
− sin(2x)

2
+

sin(3x)

3
− sin(4x)

4
+ · · · ,

has the following graph:

-
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• For any sequence of continuous functions fn which converges to f =
limn→∞ fn, is f continuous? No!

At least not in general. We will see that this depends on the type of
convergence – we will define different notions of convergence for functions.

• Similarly, one could ask whether for a sequence of differentiable functions
fn converging to f = limn→∞ fn, the limit f is also differentiable. Or
one could ask whether for any sequence of integrable functions fn, is it
true that ∫

lim
n→∞

fn = lim
n→∞

∫
fn.

Again, the answer is no in general. The theory needed to understand
(most of) these questions will be covered in the course MTH5105.

Conclusion

We will have to make precise definitions and carefully restudy topics from calculus
such as limits, convergence, continuity, etc. In fact, in order to do this precisely,
we will have to begin in an elementary manner, namely with the properties of real
numbers.

However, before we start with this, we will introduce a method which makes it easier
to read, understand and prove statements like

∀x ∈ R ∀ε > 0 ∃δ > 0 ∀y ∈ R, |x− y| < δ : |x2 − y2| < ε. (0.4)

As we will later see, this complicated looking expression simply states that f(x) = x2

is continuous. Don’t be afraid: At the end of this lecture course, you will not only
be able to understand such statements, but also to write and prove them yourselves!
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“But I already know all this!”

You have likely encountered the main players in this course already: sequences,
series, and functions. You may think that you understand them very well. However,
as the above examples demonstrate, when a theory is not given a rigorous basis,
confusion and paradox are always lurking.

This course will rebuild the edifice of calculus from the ground up. It will require you
to take a step back, to re-examine your preconceptions, and to give careful meaning
to notions which you previously took for granted.

Why go to all the trouble? There are at least two compelling reasons:

1. Practical. It’s well-known that employers like to hire mathematicians. Why?
After all, physicists and engineers also know calculus, and are much more
geared towards real-world problems. The answer is: employers want you, not
primarily because of what you know, but because of how you think. Mathe-
maticians are unique in our ability to reason with absolute precision, allowing
us to solve problems that nobody else can. This isn’t a skill you can gain
by watching a YouTube video or even reading a book: you have to earn it,
through countless hours of hard work, at a desk, solving exercises.

2. Spiritual. Mathematics is beautiful. When founded in rigour, an elegant
proof is both convincing and inspiring. The satisfaction of understanding an
argument — truly understanding it — is unparalleled. We each have a finite
amount of time on this world, and our goal should be to fill it with as much
beauty (and love) as we can.

7
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1 Sets and logic

Most of this should be familiar from MTH4213. We will provide a quick review, but
please make sure you are on top of this. Ask for help if you need it. There are no
shortcuts here: you will quickly become lost if you do not internalise these ideas.

1.A Symbols

We begin by collecting the most common mathematical symbols that you will en-
counter. It is crucial to use these! Doing so will force you to think in a precise
way.

Set-theoretic symbols

• ∈ is an element of

• ⊆ is a subset of

• ∪ union

• ∩ intersection

• ∅ the empty set.

We can also negate these symbols. For instance, the negation of ∈ is obtained by
striking out the symbol: /∈.

Logical symbols

• ⇒ implies

• ⇔ if and only if (iff)

• ∀ for all

• ∃ there exists

1.B Set theory

Definition 1.1
A set is a collection of objects. The objects of a set S are referred to as the
elements of S. We write

x ∈ S

8
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to indicate that x is an element of S.

We can define a set by listing its elements inside curly braces. For example:

S = {1, 2, 3}. (1.1)

We have 1 ∈ S but 4 6∈ S. In a set we do not allow repeated elements, so for
example:

{1, 1, 2, 3, 3, 3} = {1, 2, 3}.

We can also define a set by stating a property that determines its elements. For
example, we can define the set of all positive real numbers as follows:

T = {x ∈ R : x > 0} or T = {x ∈ R|x > 0}.

Here both “:” and “|” should be read as “such that”.

Definition 1.2
Given two sets S and T , we say that S is a subset of T , written

S ⊆ T

if and only if every element of S is an element of T , i.e:

x ∈ S ⇒ x ∈ T.

Taking S = {1, 2, 3} as in (1.1), we have

{1, 2} ⊆ {1, 2, 3}, {1} ⊆ {1, 2, 3}, 1 6⊆ {1, 2, 3}, {1, 4} 6⊆ {1, 2, 3}.

Definition 1.3
The empty set ∅ is the set with no elements. It is a subset of every set.

Exercise 1.4
Write down all the subsets of {1, 2}. Then do the same for {1, 2, 3}, and for
{1, 2, 3, 4}. Based on this, make a guess for how many subsets {1, 2, . . . , n} has,
and prove that your guess is correct.

Definition 1.5
Let A and B be two sets. The union of A and B is the set of elements belonging
to either A or B (or both):

A ∪B := {x : x ∈ A or x ∈ B}.
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The intersection of A and B is the set of elements belonging to both:

A ∩B := {x : x ∈ A and x ∈ B}.

The set of elements of A which do not belong to B is denoted:

A \B := {x : x ∈ A and x 6∈ B}.

Remark 1.6
The intersection A ∩ B can be empty even if A and B are nonempty. We have
inclusions:

A ∩B ⊆ A,
A ∩B ⊆ B,

A ⊆ A ∪B,
B ⊆ A ∪B,

A ∩B ⊆ A ∪B,
A \B ⊆ A.

Example 1.7
Let A = {1, 2, 3, 4} and B = {1, 2, 5}. Compute A ∪B, A ∩B and A \B. What
is the relation between (A ∪B) \ (A ∩B) and A \B?

You are already familiar with the following sets of numbers:

N = {1, 2, 3, 4, · · · } natural numbers

N0 = {0, 1, 2, 3, · · · } natural numbers with 0 included

Z = {0,±1,±2,±3, · · · } integers

Q = {a/b : a ∈ Z, b ∈ N} rational numbers

By definition of these sets we have immediately

N ⊆ N0 ⊆ Z ⊆ Q.

There exists a bigger set which contains all of these sets of numbers: it is the set
R of real numbers. Intuitively it is the set of all points on a straight line extending
indefinitely in both directions. We will give a rigorous definition later on but at the
moment we can already write the following chain of inclusions:

N ⊆ N0 ⊆ Z ⊆ Q ⊆ R.

10
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1.C Logic: implication and equivalence

Recall that “⇒” means “implies” or “therefore”. Here is an example of a true
statement:

I live in London⇒ I live in England.

The order is crucial! The following statement is false, as any Mancunian will proudly
attest:

I live in England⇒ I live in London.

It is a very common mistake to mix up A ⇒ B and B ⇒ A. You are much less
likely to make this mistake if you use the mathematical symbol “⇒” when writing
your arguments. This is better than using terms like “therefore” or the dreaded

∴

which causes endless logical headaches for students.

Occasionally we have two statements which each imply the other. For instance:

It is sunny⇔ It is daytime and there are no clouds blocking the sun.

In this case we say that the statements are equivalent. We write

A⇔ B

which means that A is true if and only if B is true. Here are some mathematical
examples:

1. x > 0 ⇔ x+ 1 > 1

2. If n is an integer, then n > 1
2 ⇔ n ≥ 1

3. If m is an integer, then m is even ⇔ m2 is even.

1.D Logic: quantifiers

We use the quantifiers ∀ (“for all”) and ∃ (“there exists”). Here are some examples
translating statements from English into mathematical symbols:

English Mathematics

For all real numbers x, we have
x2 ≥ 0

∀x ∈ R : x2 ≥ 0

For all integers a and b, we have
a+ b = b+ a

∀a, b ∈ Z : a+ b = b+ a

For every real number r there
exists an integer n with n > r

∀r ∈ R ∃n ∈ Z : n > r

11
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Notice that here the colon “:” is read sometimes as “we have” and sometimes as “such
that” (this is really a defect of the English language; from the logical perspective
there is no difference).

1.E Demon Games

Thought experiments are mental exercises. These are very common in science. There
are a couple of thought experiments that involve Demons, in particular in physics
and mathematics. Famous examples are Laplace’s Demon or Maxwell’s Demon.

In this lecture course, we will sometimes translate statements like

∀n ∈ N ∃m ∈ N : m > n (1.2)

(read “for all natural numbers n there exists a natural number m such that m > n”)
into a Demon Game, a thought experiment in which we play against an imaginary
Demon. This will provide a convenient framework for formulating mathematical
proofs.

The rules for the game are as follows:

1. We read the statement from left to right.

2. Whenever there is a “for all” quantifier ∀, the Demon gets to choose. If there
are restrictions, the Demon has to fulfil them.

3. Whenever there is a “there exists” quantifier ∃, then we get to choose. If there
are restrictions, we have to fulfil them.

4. If the last statement is true, then we win. Otherwise the Demon wins.

Example 1.8
The expression (1.2) corresponds to the Demon Game

• First the Demon picks n ∈ N.

• Then we pick m ∈ N.

• We win if m > n.

Example 1.9
The expression (0.4) corresponds to the Demon Game

• First the Demon picks x ∈ R.

• Then the Demon picks ε ∈ R satisfying the restriction ε > 0.

12
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• Then we pick δ ∈ R satisfying the restriction δ > 0.

• Then the Demon picks y ∈ R satisfying the restriction |x− y| < δ.

• We win if |x2 − y2| < ε.

Be careful with the order. In Example 1.8, the Demon picks n first and we pick m
afterwards knowing what the Demon picked. This is different from the statement
∃m ∈ N ∀n ∈ N : m > n which translates into a Demon Game in which we have
to choose first and the Demon picks after us knowing what we picked. Of course,
neither we nor the Demon can look into the future, so in the Example 1.9 above, we
can pick a δ that depends on x and ε which the Demon has already chosen, but our
δ cannot depend on y, as y is picked by the Demon afterwards.

Note that we abbreviated the expression ∀ε ∈ R, ε > 0 by ∀ε > 0 and we have also
abbreviated ∃δ ∈ R, δ > 0 by ∃δ > 0. In this lecture course, ε and δ are always real
numbers, so these abbreviations should cause no confusion.

Trial games: These are just examples of possible games that could have been
played, including the statement of who would have won the game if these moves
would have been played. It is best to write them down in a table.

Example 1.10
For the game from Example 1.8, we have:

Trial Game 1 Trial Game 2

Demon picks n = 44 18

We pick m = 27 55

Who wins? Demon Us

(as 27 6> 44) (as 55 > 18)

Example 1.11
For the game from Example 1.9, we have:

13
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Trial Game 1 Trial Game 2

Demon picks x = 4 4

Demon picks ε = 1 1

We pick δ = 1.5 0.2

Demon picks y = 5 4.1

Who wins? Demon Us

(as |x2 − y2| = 9 6< 1 = ε) (as |x2 − y2| = 0.81 < 1 = ε)

Winning strategy: A winning strategy is a strategy with which we always win the
game, no matter what the Demon plays (in particular, the strategy must be such
that we win even if the Demon plays particularly cleverly or stupidly).

Example 1.12
For example in Example 1.8 above, a winning strategy is the following.

• The Demon picks n ∈ N.

• We pick m := n+ 1 ∈ N.

• Then m > n, so we win.

Note that we could have also chosen m = n+ 37 to get another winning strategy,
or m = n3 + 12 to obtain yet another one. On the other hand, setting m = 3n+7

2
is not a winning strategy – it satisfies m > n, but it is not an allowed move
because in general this m is not a natural number.

Make sure that all moves are legal (i.e., possible restrictions are fulfilled). Remember
that the Demon has a free choice of legal moves. Also remember that we can’t see
into the future, so for example in the game from Example 1.9, when we pick δ, we
can choose it depending on x and ε (which the Demon already picked), but not on y,
which the Demon will pick later!

Formal proofs: If we found a winning strategy for the Demon Game, then the
original mathematical expression is true. A winning strategy can then be translated
into a formal proof, using the following simple rules.

1. Whenever the Demon picks x, we write “Given x”.

2. Whenever we pick y, we write “Let y be . . .”, or “Choose y such that . . .”.

3. At the end, replace the “we win” by an end of proof box, i.e. �.

14
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Example 1.13
The winning strategy from Example 1.12 translates into the following formal
proof.

Theorem. ∀n ∈ N ∃m ∈ N : m > n.

Proof. Given n ∈ N, choose m := n+ 1 ∈ N. Then m > n.

Negation: Now we know how we can prove that a statement is true: we have to
find a winning strategy for the corresponding Demon Game. But how do we prove
that a statement is false?

We produce the negation (¬A) of a mathematical statement A in a mechanical way
as follows. We change all ∃ into ∀ and vice-versa, and we negate the final expression
after the colon. Whenever we want to prove that some mathematical expression is
false, we will negate it and prove this negation.

Example 1.14
Consider the statement

∃n ∈ N ∀m ∈ N : m ≤ n.

We want to prove that this statement is false. We follow the rules above to
produce the negation:

∀n ∈ N ∃m ∈ N : m > n.

We now have to prove that the negation is true, by finding a winning strategy for
the corresponding Demon Game. This is precisely what we did in Example 1.13
above.
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2 Real Numbers

Recall the following systems of numbers:

N — the natural numbers: 1, 2, 3, 4, . . .
N0 — the natural numbers including zero: 0, 1, 2, 3, 4, . . .
Z — the integers: . . . ,−3,−2,−1, 0, 1, 2, 3, . . .
Q — the rationals: {p/q : p, q ∈ Z, q 6= 0}.

We assume all the standard properties of these number systems:

• in N, N0, Z and Q, we can do addition and multiplication.

• in Z and Q, we can also do subtraction.

• in Q, we can also do division (except by 0).

We also assume the standard rules:

• Commutativity of addition and multiplication:
a+ b = b+ a, ab = ba.

• Associativity of addition and multiplication:
(a+ b) + c = a+ (b+ c), (ab)c = a(bc).

• Distributivity of addition over multiplication:
a(b+ c) = ab+ ac.

Moreover, Q is a field, which means that there is an additive neutral element 0 and
a multiplicative neutral element 1 as well as inverses for addition and multiplication
(except for a multiplicative inverse of 0). Equivalently, this means that the following
equations always have a (unique) solution for x: a+ x = b and ax = b (if a 6= 0).

Finally, we assume the usual properties of order (>), i.e.

• every number a satisfies either a > 0, a = 0, or −a > 0.

• if a > 0 and b > 0, then a+ b > 0 and ab > 0.

• if a ≥ b and b ≥ a then a = b.

The real numbers contain Q (and hence Z and N). There are various ways of con-
structing the real numbers, e.g. as decimals, as “limits of Cauchy sequences”, or as
“Dedekind cuts”, etc. But we shall characterise the real numbers by their proper-
ties rather than defining them using a particular model. They should have all the
properties of Q (and in fact contain Q), but we ask for more than that!

In particular, we consider the question whether or not there are any “gaps” in the
real numbers, like the “gap” in Q between {z ∈ Q : z2 ≤ 2} and {z ∈ Q : z2 ≥ 2}.

16



Convergence and Continuity 2023–2024

Definition 2.1
Let a, b ∈ R be real numbers with a < b. We then define the intervals:

[a, b] := {x ∈ R : a ≤ x ≤ b}.
(a, b) := {x ∈ R : a < x < b}.
(a, b] := {x ∈ R : a < x ≤ b}.
[a, b) := {x ∈ R : a ≤ x < b}.

2.A Maximum and minimum of sets

Definition 2.2 (Maximum and minimum)
Suppose A ⊆ R. Then a real number x is called a maximum of A iff

1. x ∈ A,
2. ∀y ∈ A : y ≤ x.

A real number x is called a minimum of A iff

1. x ∈ A,
2. ∀y ∈ A : x ≤ y.

Examples 2.3 (i) A = [0, 1] = {x ∈ R : 0 ≤ x ≤ 1}.
x = 1 is a maximum of the set A, because

1. 1 ∈ A,

2. ∀y ∈ A : y ≤ 1.

(ii) A = {z ∈ Z : z2 < 101}.
A has a maximum of 10 and a minimum of −10. (Check!)

(iii) A = (0, 1) = {x ∈ R : 0 < x < 1}.
x = 1 is not a maximum of A, since x /∈ A.
x = 0.9 is not a maximum of A, since y = 0.99 ∈ A and y > x.

In fact, this set A does not have a maximum. Let us prove this! The
statement that A has a maximum is:

∃x ∈ A ∀y ∈ A : y ≤ x.

We want to show that this is false – or equivalently, that the negation is
true. The negation (which we want to prove) is

∀x ∈ A ∃y ∈ A : y > x. (2.1)
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Proof. Given x ∈ A, choose y = x+1
2 . We must show that y ∈ A and y > x.

Since x < 1 we have x + 1 < 2 and so y = x+1
2 < 1. We conclude that

y ∈ A. Moreover we have

y =
x+ 1

2
= x+

1− x
2

and since x < 1 we have 1−x
2 > 0 so that y > x.

(iv) A = N. Does this set have a maximum? No! We actually already proved
this last week, when giving a proof (respectively a winning strategy for the
corresponding Demon Game) of Example 1.14.

Could a set A have two different maxima?

Lemma 2.4 (Maximum is unique)
Let A ⊆ R. If A has a maximum, then this maximum is unique (and we denote
it by max(A)).

Proof. Suppose we are given x and x′ are two maxima of A. Then since x is a
maximum of A and x′ ∈ A, we have x′ ≤ x. Similarly, since x′ is a maximum of
A and x ∈ A, we have x ≤ x′. From x′ ≤ x and x ≤ x′ we deduce x = x′. So the
maximum is unique (if it exists).

Of course, the minimum (if it exists) is unique as well and we denote it by min(A).

2.B Upper and lower bounds of sets

-t t t t tt t t t t t R

Everything here is a
lower bound for A

Everything here is an
upper bound for A

Elements of A@
@R

@
@R

Definition 2.5 (Upper and lower bounds)
Let A be a subset of R. Then we say that x ∈ R is an upper bound for A iff

∀y ∈ A : y ≤ x.

Similarly, x ∈ R is a lower bound for A iff

∀y ∈ A : x ≤ y.
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Obviously, if A has a maximum then that maximum is an upper bound for A. But
a set A can have an upper bound even if it does not have a maximum, and it can
have many different upper bounds.

Examples 2.6 (i) A = [0, 1]. We have seen that x = 1 is the maximum of A,
so this is an upper bound. But any real number bigger than 1 is also an
upper bound for [0, 1], for example x = 738 or x = 1012.

(ii) A = (0, 1). We have seen that (0, 1) does not have a maximum. However,
x = 1 is an upper bound for A, as any element y ∈ A satisfies y ≤ 1. Again,
every real number greater than 1 is an upper bound as well.

(iii) A = N. We have seen that A does not have a maximum, but does it have
an upper bound? No! (We will prove this soon!)

(iv) A = {z ∈ Q : z2 ≤ 2}. This set has an upper bound, for example
x = 3. To prove this, we must show that every y ∈ A satisfies y ≤ 3, or
equivalently no element of A is strictly greater than 3.

But given y ∈ Q with y > 3, we have y2 > 9, so in particular y2 > 2 and
thus y /∈ A.

Note that the set A = {z ∈ Q : z2 ≤ 2} does not have a maximum (we
will prove this formally later), but it does have many upper bounds (e.g.
any real number ≥ 3). In fact, any real number x > 0 satisfying x2 ≥ 2 is
an upper bound for A.

Definition 2.7 (Bounded sets)
We use the following terminology. A subset A of R is said to be bounded above if
it has an upper bound, and bounded below if it has a lower bound. We say that
A is bounded, if it is both bounded above and bounded below.

2.C Supremum and infimum of sets

Definition 2.8 (Supremum and infimum)
Suppose A ⊆ R. Then a real number x is called the least upper bound of A iff

1. x is an upper bound for A,
2. every upper bound z for A satisfies x ≤ z.

The least upper bound of A (if it exists) is also called the supremum of A and
we denote it by sup(A).

A real number x is called the greatest lower bound of A iff

1. x is a lower bound for A,
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2. every lower bound z for A satisfies z ≤ x.

The greatest lower bound of A (if it exists) is also called the infimum of A and
we denote it by inf(A).

How do we prove that a particular real number x is the supremum of a particular
given set A of real numbers? We must prove

1. x is an upper bound for A, so
∀y ∈ A : y ≤ x,

2. There is no upper bound for A which is smaller than x, i.e.
∀z ∈ R with z < x, ∃y ∈ A : z < y.

Example 2.9
A = (0, 1). To show that sup(A) = 1, we have to prove

1. ∀y ∈ A : y ≤ 1

This is obvious from the definition of A.

2. ∀z ∈ R with z < 1, ∃y ∈ A = (0, 1) : z < y.

We are given z ∈ R with z < 1. If z ∈ (0, 1), let y = 1+z
2 . If z ≤ 0, let

y = 1
2 . In both cases, y ∈ A and z < y.

Remark 2.10
We have talked about “the” supremum of A (if A has a supremum), so we should
check that A cannot have two different suprema. Given a subset A ⊆ R, consider
the set:

U(A) := {x ∈ R : x is an upper bound of A}.

Then we have
sup(A) = min(U(A)).

We know by Lemma 2.4 that the minimum is unique. Hence if A has a supremum,
that supremum is unique. Similarly, the infimum (if it exists) is unique, since it
may be expressed as

inf(A) = max{x ∈ R : x is a lower bound of A}.

Lemma 2.11 (Maximum versus supremum)
Consider a set A ⊆ R.

(i) Suppose A has a maximum. Then A has a supremum, and sup(A) =
max(A).
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(ii) Suppose A has a supremum. Then A has a maximum if and only if supA ∈
A. In this case, we have max(A) = sup(A).

There are many sets A which have a supremum but do not have a maximum, because
sup(A) 6∈ A. For example, A = (0, 1).

Proof. (i) Let x = max(A). We have to check that x is an upper bound for A and
that there is no z ∈ R with z < x which is also an upper bound for A.

By the definition of a maximum, we know that ∀y ∈ A : y ≤ x, so x is an upper
bound for A.

If z ∈ R with z < x, then there is an element of A which is bigger than z, namely x
itself. Hence, z is not an upper bound for A.

(ii) Now let x = sup(A). To show that x is a maximum for A, we have to check
that x ∈ A and that x is an upper bound for A. But this is automatic: we are given
x ∈ A, and by definition the supremum is an upper bound.

Of course, the same result holds replacing “maximum” by “minimum” and “supre-
mum” by “infimum”.

2.D The properties of the real numbers

We think of the real numbers as decimal numbers with an infinite number of decimal
places after the decimal point. More formally, the real numbers can be defined using
“Dedekind cuts” or “Cauchy sequences”, but we will not do this here. We shall just
characterise them by a collection of properties and not worry about exactly how
they are constructed. When dealing with the real numbers, the following properties
are the only facts we will ever need to use.

Definition 2.12 (The real numbers)
The real numbers are a set R with the following properties.

1. Q ⊆ R, i.e. every rational number is a real number.

2. R is a field, i.e. there are operations +, · (with inverse operations −,÷,
except for division by zero) satisfying the usual rules mentioned before,
i.e. commutativity, associativity and distributivity, as well as existence of
inverses (except for a multiplicative inverse of zero).

3. R is totally ordered, i.e. ∀x, y ∈ R exactly one of the following is true:
x > y, x = y, x < y.

4. The Completeness Axiom: Every non-empty set of real numbers which is
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bounded above has a least upper bound in R.

Remark 2.13
Q satisfies (1)–(3), but not (4). C satisfies (1) and (2), but not (3). It is the
Completeness Axiom which ensures that there are no “gaps” in R like those in
Q.

Theorem 2.14 (Archimedean property)
For every real number x, there exists a natural number n > x.

Remark 2.15
Although this seems “obvious” if we think of the real numbers as decimals, we
cannot be sure that the Completeness Axiom has not allowed “∞” to be a real
number. So we need to carefully prove this!

Proof. Suppose there exists a real number x ∈ R such that for all n ∈ N : x ≥ n.
We aim for a contradiction. If such an x exists, it is an upper bound for N. But
because N is a non-empty subset of R (e.g. 1 ∈ N), the Completeness Axiom tells
us that there exists a supremum, say y ∈ R.

Then y−1 is not an upper bound for N. So ∃n ∈ N with n > y−1. But as n+1 ∈ N
and n + 1 > y, y can not be an upper bound for N, which contradicts how y was
chosen (as the least upper bound for N).  

Corollary 2.16
For all ε ∈ R with ε > 0 there exists n ∈ N such that 1

n < ε.

Proof. We have 1
ε ∈ R (because R is a field). By the Archimedean property (The-

orem 2.14), ∃n ∈ N such that 1
ε < n. But then by the usual rules of order,

1
ε < n⇔ 1 < nε⇔ 1

n < ε.

Next, we will see that Q lies “dense” in R.

Theorem 2.17 (The rational numbers are dense in R.)
Suppose x, y ∈ R with x < y. Then ∃z ∈ Q with x < z < y.

Proof. First, assume 0 ≤ x < y.
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n
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n . . . m

n

In the picture above, we first want to make the size ( 1
n) of the “grid” { kn : k ∈ N}

small enough, to make sure there is at least one element between x and y. We then
take the first of these which is strictly larger than x.

We now turn this intuition into a mathematical proof. By Corollary 2.16 we can
choose an n ∈ N such that 1

n < y − x. We now wish to find m.

By the Archimedean property (Theorem 2.14), there exists s ∈ N such that s > nx
and hence x < s

n . Consider the set:

A = {s ∈ Z : x < s
n}.

We have just shown that A is nonempty. Since x ≥ 0 and n > 0 we see that A is
bounded below, e.g. by 0. From the Completeness Axiom formulated for infimum
(Theorem 2.22), we conclude that A has an infimum, say m = inf A. Clearly m > 0.

We claim that m ∈ Z. Suppose for a contradiction that m 6∈ Z. Then there exists
an ε > 0 such that [m− ε,m] ∩ Z = ∅ which implies [m− ε,m] ∩ A = ∅. It follows
that m−ε is a lower bound for A, contradicting the fact that m is the greatest lower
bound.

So we have m ∈ Z with m < s for all s ∈ A. It follows that m ∈ A: if not, then
m+ 1 would still be a lower bound for A, contradicting that m is the greatest lower
bound. We conclude that m ∈ A is a minimum for A (Lemma 2.11), and hence is
the least integer such that x < m

n . It remains to show that m
n < y.

But we know that m−1
n ≤ x (since m = minA). Moreover, we also know that

1
n < y − x. Adding these two inequalities, we have

m

n
=
m− 1

n
+

1

n
< x+ (y − x) = y.

So we are done in this case. But we still need to consider the cases x < 0 < y and
x < y ≤ 0.

In the case x < 0 < y, we observe that there is an obvious rational number between
x and y, namely 0. So we don’t have to do anything!

In the case x < y ≤ 0, we observe that 0 ≤ −y < −x. So from our first case, we
know that there exists m

n with −y < m
n < −x and hence x < −m

n < y.

Remark 2.18
In fact, we can always choose z 6= 0 by modifying the second case: If x < 0 < y
we set x′ = 0 and search for z ∈ Q with x′ < z < y. Such a z can be found
according to the first case and it will then obviously also satisfy x < z < y as
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well as z 6= 0. We will make use of this remark in Corollary 2.21 below.

Next, we show, using only our axioms for R, that there is a real number
√

2.

Theorem 2.19
There exists x ∈ R such that x2 = 2.

Proof. Let A = {z ∈ R : z2 ≤ 2}. A is non-empty (for example 1 ∈ A) and A is
bounded above (for example 3 is an upper bound for A, since for any z ∈ R with
z > 3, we have z2 > 9, so z /∈ A).

So by the Completeness Axiom, A has a least upper bound x = sup(A) in R. Since
R is totally ordered, there are three possibilities:

x2 > 2, x2 = 2, x2 < 2.

If we can rule out the first and last one, then we can conclude that x2 = 2.

If x2 < 2
Our idea is to show that there is some n ∈ N such that (x+ 1

n)2 < 2, which will give
x+ 1

n ∈ A which contradicts x being an upper bound for A.

(Rough working.) How do we find such an n ∈ N? Write ε := 2−x2 > 0.
Then (

x+
1

n

)2
= x2 +

2x

n
+

1

n2
≤ (2− ε) +

6

n
+

1

n
,

where we used that x ≤ 3 (because 3 is an upper bound for A) and
1
n2 ≤ 1

n for all natural numbers. We want the last expression to be
smaller than 2, so we need

6

n
+

1

n
< ε,

or equivalently 1
n <

ε
7 . But such an n exists by Corollary 2.16.

We are now ready to continue the proof. If x2 < 2, let ε = 2−x2 > 0. By Corollary
2.16, there exists n ∈ N such that 1

n <
ε
7 and hence 7

n < ε. Now(
x+

1

n

)2
= x2 +

2x

n
+

1

n2
≤ (2− ε) +

6

n
+

1

n
≤ 2− ε+

7

n
< 2,

so x+ 1
n ∈ A. But this contradicts the fact that x is an upper bound for A.  

If x2 > 2
Our idea is to show that there is some n ∈ N such that (x− 1

n)2 > 2. It will follow
that x− 1

n is an upper bound for A, contradicting the fact that x is the least upper
bound for A.
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(Rough working.) How do we find such an n ∈ N? We set ε = x2−2 > 0
and compute (

x− 1

n

)2
= x2 − 2x

n
+

1

n2
≥ 2 + ε− 6

n
,

using as above that x ≤ 3 (and this time using 1
n2 ≥ 0). We want the

last expression to be bigger than 2, so we need 6
n < ε, or equivalently

1
n <

ε
6 , which again is doable by Corollary 2.16.

Now we can complete the proof. If x2 > 2, let ε = x2 − 2 > 0. By Corollary 2.16,
there exists n ∈ N such that 1

n <
ε
6 , and hence 6

n < ε. Now(
x− 1

n

)2
= x2 − 2x

n
+

1

n2
≥ 2 + ε− 6

n
> 2,

since x ≤ 3. This shows that x − 1
n is an upper bound for A. (Recall that x ≥ 1.

Suppose z > x − 1
n . Since z > x − 1

n ≥ 0 we have z2 > (x − 1
n)2 > 2, and hence

z /∈ A.) But this contradicts the fact that x was chosen as the least upper bound
for A.  

In general (i.e., except for training purposes) we don’t have to reveal our rough
working!

Remark 2.20
Earlier in your life, you will have seen the proof that

√
2 is irrational (it’s not

difficult; go ahead and look it up if you’ve forgotten how it goes). Strictly speak-
ing, that proof only shows that

√
2 is irrational if it exists! We have now proven

that it exists, using the axioms for the real numbers (Definition 2.12).

The existence of irrational numbers was a fraught topic for a very long time.
According to legend, the Pythagorean philosopher Hippasus was murdered due
to his insistence that they exist.

We have proved
√

2 ∈ R, but we know that
√

2 /∈ Q, i.e.
√

2 is irrational. But
what about m

n

√
2 (with m

n ∈ Q)? Obviously, m
n

√
2 is rational if m = 0 (since then

m
n

√
2 = 0). Suppose that m

n

√
2 is rational for some m,n ∈ Z with m 6= 0. Then

m
n

√
2 = p

q for some p, q ∈ Z with q 6= 0. So
√

2 = pn
qm , contradicting the fact that

√
2

is irrational. Hence m
n

√
2 is irrational, provided m 6= 0.

We can use this to prove that not only the rational numbers are dense in R (see
Theorem 2.17), but also the irrational numbers.

Corollary 2.21 (The irrational numbers are dense in R)
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For any x, y ∈ R with x < y there exists an irrational number z with x < z < y.

Proof. It will be enough to show that there exists r ∈ Q, r 6= 0, with x < r
√

2 < y.
This means, it is enough to show that ∃r ∈ Q, r 6= 0, with x√

2
< r < y√

2
.

But in the case that 0 ≤ x < y or x < y ≤ 0, Theorem 2.17 shows that there is such
an r. If x < 0 < y, such an r can be found according to Remark 2.18.

On the last few pages, we have been concerned with suprema of sets in R. We finish
this chapter with a statement about infima in R.

Theorem 2.22 (Completeness Axiom formulated for infima)
Suppose A ⊆ R is non-empty and bounded below, then A has a greatest lower
bound.

Proof. We have −A = {−x : x ∈ A} is non-empty (since A is non-empty) and −A
is bounded above (since A is bounded below). Hence, by the Completeness Axiom,
there exists a supremum, y = sup(−A). We will show that −y is the greatest lower
bound of A, i.e., −y = inf(A).

1. −y is a lower bound for A. Suppose x ∈ A. By definition of −A we know
that −x ∈ −A. Since y is an upper bound for −A we know that −x ≤ y or,
equivalently, x ≥ −y. It follows that −y is a lower bound for A.

2. −y is the greatest lower bound for A. Suppose that z > −y is a larger one.
Since −z < y and y is the least upper bound on −A, we know that −z cannot
be an upper bound on −A. Choose x ∈ −A with x > −z. Now observe that
−x ∈ A and −x < z, contradicting the assumption that z is a lower bound
for A.

(1) and (2) together show that −y = inf(A).

Remark 2.23
We have used the Completeness Axiom (existence of the supremum for non-empty
sets bounded above) to prove the existence of the infimum for non-empty sets
bounded below. But using a very similar proof as above, one can easily deduce
the Completeness Axiom from the existence of infima. In other words, Theorem
2.22 is equivalent to the Completeness Axiom.

26



Convergence and Continuity 2023–2024

3 Sequences

A sequence of real numbers is any infinite list of real numbers, for example

1, 2, 3, 4, . . . or 1, 4, 9, 16, . . . or 1, 1, 1, 1, . . .

(there does not have to be a rule for how to find the next element). We write (xn)∞n=1

to denote the sequence x1, x2, x3, . . .. In this notation, the above three sequences
are (n)∞n=1, (n2)∞n=1, and (1)∞n=1. We sometimes also simply write (xn). Formally, a
sequence is a function from N to R, defined by n 7→ xn.

In this chapter, we are concerned with convergence of sequences. We start with the
easiest situation, asking whether or not a sequence converges to zero.

3.A Convergence to zero

Definition 3.1 (Convergence to zero)
A sequence (xn)∞n=1 is said to converge to 0, denoted “xn → 0 as n → ∞” or
“ limn→∞ xn = 0” if

∀ε > 0 ∃N ∈ N ∀n ∈ N, n > N : |xn| < ε. (3.1)

Remark 3.2
We will always assume that ε ∈ R and N,n ∈ N in this course, even if we do
not explicitly mention it. We will say that (xn)∞n=1 converges to ` ∈ R if the
sequence (yn)∞n=1, defined by yn = xn−`, converges to zero. So statements about
convergence to other limits than zero can always be converted into statements
about convergence to 0.

Demon Game The Demon Game corresponding to the definition that (xn) con-
verges to zero (i.e., to the statement (3.1)) is the following. (Of course, the sequence
(xn)∞n=1 is given, before the game starts!)

• First the Demon picks ε > 0 (ε ∈ R).

• Then we pick N ∈ N.

• Then the Demon picks n > N (n ∈ N).

• We win if |xn| < ε.

To prove that a given sequence (xn) converges to 0, we have to find a winning
strategy for this game. That is, we have to show that whatever (small) number
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ε > 0 we are given, the |xn| are all smaller than ε for n sufficiently large. In other
words, given ε > 0, we need a strategy to produce an N (which will depend on ε
and the given sequence (xn)) such that |xn| < ε for all n > N .

Examples 3.3 (i) xn = 1
n , so x1 = 1, x2 = 1

2 , x3 = 1
3 , . . .. Let us first look at

some trial games:

Trial Game 1 Trial Game 2 Trial Game 3

Demon picks ε = 0.1 10−6 10−6

We pick N = 10 100 106

Demon picks n = 11 101 106 + 1

Who wins? Us Demon Us

(as 1
11 < 0.1) (as 1

101 6< 10−6) (as 1
106+1

< 10−6)

The winning strategy is clear: if the Demon picks a particular value for ε,
we choose N to be d1εe (the least integer ≥ 1

ε ). (Because of the Archimedean
property (Theorem 2.14), we know that this N actually exists.) We can
now translate this winning strategy into a formal proof.

Proof (that xn = 1
n → 0 as n→∞). Given ε > 0, let N = d1εe, so 1

N ≤ ε
(with equality only if 1

ε is an integer). Now for all n > N , we have

|xn| =
1

n
<

1

N
≤ ε.

So |xn| < ε.

(ii) xn = 1
n2 converges to zero.

Strategy 1: Following the method of example 1, choose N = d 1√
ε
e, so 1

N2 ≤
ε. This gives the following formal proof:

Proof. Given ε > 0, let N = d 1√
ε
e, so 1

N2 ≤ ε. Then for all n > N , we have

|xn| =
1

n2
<

1

N2
≤ ε,

so |xn| < ε.
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Strategy 2: We can use the fact that 1
n2 ≤ 1

n for all n ∈ N. So the choice of
N in Example (i) will still work! This gives the formal proof:

Proof. Given ε > 0, let N = d1εe, so 1
N ≤ ε. Now for all n > N , we have

|xn| =
1

n2
≤ 1

n
<

1

N
≤ ε.

So |xn| < ε.

(iii) xn = 1
n+n2 converges to zero.

We note that 1
n+n2 <

1
n (because n2 > 0), so we can again use the strategy

from Example (i). The formal proof is the following.

Proof. Given ε > 0, let N = d1εe, so 1
N ≤ ε. Now for all n > N , we have

|xn| =
1

n+ n2
≤ 1

n
<

1

N
≤ ε.

So |xn| < ε.

(iv) xn = 1 for all n ∈ N. This is the sequence 1, 1, 1, 1, . . . and it does not
converge to 0. To prove that this sequence does not converge to 0, we must
prove the negation of (3.1), namely

∃ε > 0 ∀N ∈ N ∃n > N : |xn| ≥ ε. (3.2)

A formal proof that xn = 1 does not converge to zero is the following.

Proof. Let ε = 1
2 . Then given any N , choose n = N + 1. Now, we have

|xn| = 1 ≥ 1

2
= ε.

So (3.2) is true and hence the sequence does not converge to zero.

(v) Let (xn) be the sequence defined by

xn =

{
1 if n is prime,

0 if n is not prime.

Also this sequence does not converge to zero. A formal proof is the following
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Proof. Let ε = 1
2 . Then given any N , choose n to be any prime number

larger than N . Then |xn| = 1 ≥ 1
2 = ε. So (xn) does not converge to

zero.

(vi) xn = 2 sinn
n converges to zero.

We don’t know the exact value of sinn as it depends on the value of n
mod 2π, but we do know that |sinn| ≤ 1 for all n ∈ N.

Proof. Given ε > 0, let N = d2εe, so 2
N ≤ ε. Now given any n > N , we

have

|xn| =
|2 sinn|

n
≤ 2

n
<

2

N
≤ ε.

so |xn| < ε.

(vii) Let (xn) be the sequence given by

xn =

{
1
n if n is prime,

0 if n is not prime.

(This is the following sequence: 0, 12 ,
1
3 , 0,

1
5 , 0,

1
7 , 0, 0, 0,

1
11 , 0, . . .)

Here, |xn| ≤ 1
n for all n ∈ N, so the same proof as in Example (i) proves

that (xn) converges to zero. More generally, this proof will work whenever
we have a sequence (xn)∞n=1 with |xn| ≤ 1

n for all n ∈ N.

Motivated by the above examples, we are now going to prove how the convergence
of some sequence implies the convergence of some other sequences.

Lemma 3.4 (Dominated convergence)
If (xn)∞n=1 is a sequence which converges to zero and (yn)∞n=1 is a sequence with
|yn| ≤ |xn| for all n ∈ N, then (yn)∞n=1 converges to zero.

Proof. Given any ε > 0, we must show that there exists N such that for all n > N
we have |yn| < ε. But we know ∃N ∈ N such that for all n > N |xn| < ε (since (xn)
converges to zero). So taking this value of N , we deduce that for all n > N we have
|yn| ≤ |xn| < ε, so |yn| < ε. This proves the lemma.

Corollary 3.5
If (xn)∞n=1 is a sequence which does not converge to 0 and (yn)∞n=1 is a sequence
with |yn| ≥ |xn| for all n ∈ N, then (yn)∞n=1 does not converge to zero.
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Proof. This is the contrapositive of Lemma 3.4. We give a proof by contradiction. If
(yn)∞n=1 does converge to zero, then by Lemma 3.4 so does (xn)∞n=1, since |xn| ≤ |yn|
for all n ∈ N.  

Lemma 3.4 and Corollary 3.5 give us a lot of examples of sequences which converge
to zero and sequences which do not converge to zero, but it will be useful to have
some additional rules.

For example, if we have a sequence (xn)∞n=1 which converges to zero and a constant
c ∈ R, does the sequence (yn)∞n=1 given by yn = cxn converge to zero? If |c| ≤ 1 it
does by Lemma 3.4, but what if |c| is larger than 1?

Lemma 3.6
If (xn)∞n=1 is a sequence which converges to zero and c ∈ R is any constant, then
the sequence (yn)∞n=1 defined by yn = cxn for all n ∈ N also converges to zero.

How do we give a formal proof of this? Let us first consider a particular example,
say c = 100. Suppose that we are given some ε > 0. We have to find N

such that |yn| < ε for all n > N ,
i.e., such that |100xn| < ε for all n > N ,
i.e., such that |xn| < ε

100 for all n > N .

But such an N exists since we are given that (xn)∞n=1 converges to zero and we can
just take the value of N to be that given by the “(xn) Demon Game” for ε̃ = ε

100 .
Formally, the proof is as follows:

Proof. If c = 0, there is nothing to do, since (yn)∞n=1 is then the constant sequence
0, 0, 0, . . . which obviously converges to zero.

If c 6= 0, suppose we are given some ε > 0, set ε̃ = ε
|c| > 0. Because (xn)∞n=1 converges

to zero, we know that ∃N ∈ N such that for all n > N we have |xn| < ε̃ = ε
|c| . Hence,

choosing the same N , we have for all n > N that

|yn| = |cxn| = |c| · |xn| < |c| · ε̃ = ε,

so (yn)∞n=1 converges to zero.

Corollary 3.7
Let (xn)∞n=1 be a sequence which converges to zero and (yn)∞n=1 a sequence sat-
isfying |yn| ≤ c|xn| for some constant c ∈ R with c > 0 and for all n ∈ N. Then
(yn)∞n=1 converges to zero.
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Proof. By Lemma 3.6, (cxn)∞n=1 converges to zero. So by Lemma 3.4, (yn)∞n=1 con-
verges to zero, since |yn| ≤ c|xn|.

Corollary 3.8
If (xn)∞n=1 is a sequence which does not converge to zero and (yn)∞n=1 is a sequence
with |yn| ≥ c|xn| for some constant c > 0 and all n ∈ N, then (yn)∞n=1 does not
converge to zero.

Proof. By contradiction. Suppose (yn)∞n=1 converges to zero. Then by Lemma 3.6,

the sequence (ync )∞n=1 converges to zero. But |xn| ≤ |yn|
c for all n ∈ N, so (xn)∞n=1

converges to zero by Lemma 3.4.  

If (xn)∞n=1 and (yn)∞n=1 are two sequences which both converge to zero, what can we
say about the sequence (zn)∞n=1 where zn = xn + yn for each n ∈ N?

We already know the answer in some examples, e.g. if xn = 1
n and yn = 1

n , so
zn = 2

n . Because (xn)∞n=1 converges to zero and zn = 2xn, we know from Lemma
3.6 that (zn)∞n=1 also converges to zero. Moreover, if xn = 1

n and yn = 1
n2 , we know

that (zn)∞n=1 converges to zero, since 1
n + 1

n2 ≤ 1
n + 1

n = 2
n . What about the general

case of adding sequences?

Theorem 3.9 (Summing sequences converging to zero)
If (xn)∞n=1 converges to zero and (yn)∞n=1 converges to zero then so does (zn)∞n=1

where zn = xn + yn for all n ∈ N.

In order to win the Demon Game, given ε > 0, we must find N such that |xn+yn| < ε
for all n > N . We will need the following basic fact, which is used all the time in
this module.

Theorem 3.10 (Triangle inequality)
∀x, y ∈ R : |x+ y| ≤ |x|+ |y|.

Proof. Exercise. Use that |x| = max{x,−x}.

Because of the triangle inequality, we have |xn+yn| ≤ |xn|+|yn|. To show |xn+yn| <
ε it is therefore enough to ensure that |xn| + |yn| < ε (for n > N), but we can do
this by ensuring that |xn| < ε

2 and |yn| < ε
2 .

Proof of Theorem 3.9. Given ε > 0, we must show that there exists N ∈ N with the
property that ∀n > N we have |xn + yn| < ε. But since (xn)∞n=1 converges to zero,
we know that ∃Nx ∈ N such that |xn| < ε̃ = ε

2 for all n > Nx. Moreover, since
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(yn)∞n=1 converges to zero, we know that ∃Ny ∈ N such that |yn| < ε̃ = ε
2 for all

n > Ny.

Set N := max{Nx, Ny}. Then for all n > N , we have

|xn| < ε
2 (since n > N ≥ Nx)

and |yn| < ε
2 (since n > N ≥ Ny).

So using the triangle inequality, |xn + yn| ≤ |xn|+ |yn| < ε
2 + ε

2 = ε.

Using the results from 3.4–3.9, we can often prove that a given sequence converges
to zero by breaking it up into simpler sequences that we already know converge to
zero (similarly with sequences that do not converge to zero).

Examples 3.11 (i) Consider the sequence xn = 3
n4 + 4

n+1 .

We know that ( 1
n) converges to zero, so by Lemma 3.6, ( 3

n) and ( 4
n) converge

to zero. But
| 3
n4 | = 3

n4 ≤ 3
n = | 3n |,

so ( 3
n4 ) converges to zero by Lemma 3.4. Moreover,

| 4
n+1 | =

4
n+1 <

4
n = | 4n |,

so ( 4
n+1) converges to zero by Lemma 3.4. We then deduce from Theorem

3.9 that ( 3
n4 + 4

n+1)∞n=1 converges to zero.

We could have also proved this directly:

Proof. Given ε > 0, let N = d7εe. Then for given n > N , we have

|xn| =
3

n4
+

4

n+ 1
≤ 3

n
+

4

n
=

7

n
<

7

N
≤ ε.

(ii) Consider xn = 100√
n
− 3 cos(πn)

n2+5n+7
.

We first show that
(

1√
n

)
converges to zero.

Indeed, given ε > 0, choose N = d 1
ε2
e, so that 1

N ≤ ε2 or equivalently
1√
N
≤ ε. Then for all n > N , we have∣∣ 1√

n

∣∣ = 1√
n
< 1√

N
≤ ε.
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Now that we know that
(

1√
n

)
converges to zero, we also know that

(
100√
n

)
converges to zero by Lemma 3.6. On the other hand, using∣∣− 3 cos(πn)

n2+5n+7

∣∣ ≤ 3
∣∣ 1
n2+5n+7

∣∣ ≤ 3| 15n | =
3
5 |

1
n |,

we know that
(
− 3 cos(πn)

n2+5n+7

)
converges to zero (by Corollary 3.7).

Hence, by Theorem 3.9, (xn)∞n=1 converges to zero.

Again, we could have also proved this directly:

Proof. Given ε > 0, let N = d(103ε )2e. Then for given n > N , we have

|xn| =
∣∣∣∣100√

n
− 3 cos(πn)

n2 + 5n+ 7

∣∣∣∣ ≤ ∣∣∣∣100√
n

∣∣∣∣+

∣∣∣∣ 3 cos(πn)

n2 + 5n+ 7

∣∣∣∣ ≤ 100√
n

+
3

n2 + 5n+ 7

≤ 100√
n

+
3

n2
≤ 100√

n
+

3√
n

=
103√
n
<

103√
N
≤ ε.

(iii) Consider zn = n2+1
5n −

1
n2 .

We write zn = xn − yn with xn = n2+1
5n and yn = 1

n2 . Then, we see that

|xn| > n2

5n = 1
5n for all n ∈ N. So by Corollary 3.8, we see that (xn) does

not converge to zero.

On the other hand, we know (as seen before) that (yn) converges to zero.
Together, this implies that (zn) does not converge to zero. [We can prove
this by contradiction: Assume (zn) converges to zero. Then, because (yn)
converges to zero, Theorem 3.9 shows that xn = zn + yn converges to zero,
contradicting what we have just proved above.  ]

We can also prove directly that (zn) does not converge to zero, by noting
that for n ≥ 5, we have

|zn| = n3+n
5n2 − 5

5n2 = n3+n−5
5n2 ≥ n3

5n2 = 1
5n. (3.3)

We want to show that ∃ε > 0 ∀N ∈ N ∃n > N : |zn| ≥ ε. First we choose
ε = 1. Then given any N , pick n > max{N, 5} (We want both n > N – as
this is the condition for how we have to chose n in the Demon Game – and
also n > 5 – as this allows us to use the above estimate (3.3)). We then get
|zn| ≥ 1

5n > 1 = ε, proving that (zn) does not converge to zero.

Example 3.12
Let (xn)∞n=1 be the sequence given by xn = 1

2n , i.e. 1
2 ,

1
4 ,

1
8 ,

1
16 , . . .. We would like

to compare this with the sequence yn = 1
n (which we know converges to zero).
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We claim that 1
2n ≤

1
n , ∀n ∈ N.

Proof. We prove this by induction. We know that the statement is true for n = 1
(where it says that 1

2 ≤ 1). Now assume that the claim holds for some n ∈ N.
Then

1

2n+1
=

1

2

1

2n

(?)

≤ 1

2

1

n
=

1

n+ n
≤ 1

n+ 1
.

So the fact that the claim holds for n [we used this in (?)] implies that it also
holds for n+ 1. Hence it holds for all n ∈ N.

The claim, together with Lemma 3.4, then implies that (xn) converges to zero.

We want to generalise this and show that the sequence given by xn = cn for some
c ∈ R converges to zero if |c| < 1 (and does not converge to zero if |c| ≥ 1). To prove
this, it is useful to prove the following lemma first.

Lemma 3.13 (Bernoulli’s inequality)
If α ∈ R, α ≥ −1, then ∀n ∈ N : (1 + α)n ≥ 1 + nα.

Proof. We prove this again by induction. Obviously the statement is true for n = 1
(where it just says 1+α ≥ 1+α). Assume now that it is true for some n ∈ N. Then

(1 +α)n+1 = (1 +α)(1 +α)n
(?)

≥ (1 +α)(1 +nα) = 1 +α+nα+nα2 ≥ 1 + (n+ 1)α,

where in (?) we used the induction hypothesis as well as α ≥ −1. Hence the claim
being true for n implies that it is true for n + 1 as well. Thus it holds for all
n ∈ N.

Theorem 3.14 (“Geometric sequences”)
If c ∈ R and the sequence (xn)∞n=1 is defined by xn = cn, then

(i) (xn) converges to zero if |c| < 1.

(ii) (xn) does not converge to zero if |c| ≥ 1.

Proof. If c = 0, then xn = 0 for all n, and (xn) converges to zero. So we may assume
c 6= 0.

(i) If |c| < 1, then |c| = 1
1+α for some α > 0. So by Lemma 3.13, we have

|cn| = |c|n =
( 1

1 + α

)n
≤ 1

1 + nα
<

1

nα
.
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But ( 1
nα) converges to zero (by Lemma 3.6, since 1

n converges to zero). Hence
the sequence (cn) converges to zero by Lemma 3.4.

(ii) If |c| ≥ 1 then |c| = 1 + α for some α ≥ 0. Hence, by Lemma 3.13

|cn| = |c|n ≥ 1 + nα ≥ 1,

for all n ∈ N. But the constant sequence 1, 1, 1, . . . does not converge to zero
and hence (cn) does not converge to zero by Corollary 3.5.

What about products and quotients of sequences? If (xn)∞n=1 and (yn)∞n=1 both
converge to zero, what can we say about the sequences (xnyn)∞n=1 and

(
xn
yn

)∞
n=1

?

We cannot say much about the quotient
(
xn
yn

)∞
n=1

. It will depend on whether the
nominator or denominator go to zero faster. For example, let (xn)∞n=1 be given by
xn = 1

n and (yn)∞n=1 defined by yn = 1
n2 . We know that (xn) and (yn) both converge

to zero. But we have:

• xn
yn

= n, so
(
xn
yn

)
does not converge to zero.

• yn
xn

= 1
n , so

( yn
xn

)
does converge to zero.

In contrast to this fact, we can always say something about the product (xnyn)∞n=1.

Theorem 3.15 (Product of sequences converging to zero)
If (xn)∞n=1 and (yn)∞n=1 both converge to zero then (xnyn)∞n=1 converges to zero.

Proof. We follow a similar strategy to the proof of Theorem 3.9, but instead of split-
ting ε into ε

2 + ε
2 , we split it into

√
ε
√
ε.

We must prove that

∀ε > 0 ∃N ∈ N ∀n ∈ N, n > N : |xnyn| < ε.

To prove this, suppose we are given ε > 0. Let ε̃ =
√
ε. Then since (xn) converges

to zero, we have

∃Nx ∈ N ∀n ∈ N, n > Nx : |xn| < ε̃ =
√
ε

Similarly since (yn) converges to zero, we have

∃Ny ∈ N ∀n ∈ N, n > Ny : |yn| < ε̃ =
√
ε

Let N = max{Nx, Ny}. Then for all n > N , we have

|xnyn| = |xn||yn| <
√
ε
√
ε = ε.

Hence (xnyn)∞n=1 converges to zero.
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Example 3.16

Consider xn = 2n

3n(n+1)2
. By Lemma 3.4,

(
1

(n+1)2

)
converges to zero, as 1

(n+1)2
<

1
n . By Theorem 3.14, 2n

3n = (23)n converges to zero. Thus, by Theorem 3.15, (xn)
converges to zero.

Remark 3.17
Of course, we could have obtained this also by estimating xn <

1
n and using only

earlier results, but sometimes it is difficult to obtain such estimates.

The proof of Theorem 3.15 suggests that we might be able to prove more general
results by splitting ε up in other ways, e.g. ε = ε

c · c for some real constant c > 0.
This is our next goal.

Definition 3.18 (Bounded sequences)
We say that a sequence (xn)∞n=1 (of real numbers) is bounded above if ∃M ∈ R
such that xn ≤ M for all n ∈ N. The sequence is bounded below if ∃m ∈ R such
that xn ≥ m for all n ∈ N. We say that (xn) is bounded if it is bounded above
and below.

A sequence which satisfies the definition is illustrated here.

-

6
R

N
1 2 3 4 5s

s
s

s s

s

s s s

s
s

s

m

M

Remark 3.19
Clearly, (xn)∞n=1 is bounded if and only if (|xn|)∞n=1 is bounded above. We can
write the condition for sequence (xn)∞n=1 to be bounded as follows:

∃M ∈ R ∀n ∈ N : |xn| ≤M.
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Example 3.20
Every sequence (xn)∞n=1 which converges to zero is bounded.

Proof. If (xn) converges to zero then taking ε = 1 in the definition of convergence
to zero (Definition 3.1), there exists some N ∈ N such that for all n > N we have
|xn| < 1. This is illustrated in the following figure.

-

6
R

N
1 2 3 4 5

s

s

s

s s
s

s
s s s s s

−1

1

Take M to be max{|x1|, |x2|, . . . , |xN |, 1}. Then for all n ∈ N, we have |xn| ≤M ,
i.e. −M ≤ xn ≤M for all n ∈ N.

This shows that M is an upper bound and −M is a lower bound for the sequence
(xn), as defined in Definition 3.18.

We are now ready to state and prove the more general version of Theorem 3.15.

Theorem 3.21 (Product of sequences, more general version)
If (xn)∞n=1 is bounded and (yn)∞n=1 converges to zero then (xnyn)∞n=1 converges to
zero.

Proof. As (xn)∞n=1 is bounded, there exists M ∈ R such that |xn| ≤M for all n ∈ N.
Hence

|xnyn| = |xn||yn| ≤M |yn| = |Myn|, ∀n ∈ N.

But (yn) converges to zero and so (Myn) converges to zero as well (by Lemma 3.6),
so (xnyn) converges to zero by Lemma 3.4.

Remark 3.22
Alternatively, we could prove this like we proved Theorem 3.15, splitting up
ε = M · εM . (As (yn) converges to zero, we will get |yn| ≤ ε

M for large enough n.)
Try this!
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3.B Convergence in general

Definition 3.23 (Convergence of a sequence to x ∈ R)
A sequence (xn)∞n=1 converges to x ∈ R if and only if (xn − x)∞n=1 converges to
zero. Equivalently, (xn)∞n=1 converges to x ∈ R if and only if

∀ε > 0 ∃N ∈ N ∀n > N : |xn − x| < ε. (3.4)

We use the notation xn → x as n→∞ or limn→∞ xn = x.

Theorem 3.24
Suppose (xn)∞n=1 converges to x ∈ R and (yn)∞n=1 converges to y ∈ R. Then

(i) (cxn)∞n=1 converges to cx for any constant c ∈ R.

(ii) (xn + yn)∞n=1 converges to x+ y.

(iii) (xnyn)∞n=1 converges to xy.

(iv) if y 6= 0 and yn 6= 0 for all n ∈ N, then
(
xn
yn

)∞
n=1

converges to x
y .

Proof.

(i) By the definition of convergence of (xn) to x, we know that the sequence
(xn−x) converges to zero. So by Lemma 3.6, the sequence c(xn−x) converges
to zero, i.e. (cxn−cx) converges to zero. But then by definition (cxn) converges
to cx.

(ii) As xn → x and yn → y as n→∞, we know that (xn−x) and (yn−y) are two
sequences that converge to zero. Hence by Theorem 3.9, ((xn−x)+(yn−y))∞n=1

converges to zero. Rewriting this, we obtain that ((xn + yn) − (x + y))∞n=1

converges to zero. But then by definition (xn + yn) converges to x+ y.

(iii) We know that (xn − x) and (yn − y) converge to zero. We write

xnyn − xy = (xn − x)(yn − y) + x(yn − y) + (xn − x)y. (3.5)

Then, we know that

• ((xn − y)(yn − y)) converges to zero (by Theorem 3.15).

• (x(yn − y)) converges to zero (by Lemma 3.6, as (yn − y) converges to
zero).

• ((xn−x)y) converges to zero (again by Lemma 3.6, as (xn−x) converges
to zero).
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So by Theorem 3.9, the right hand side of (3.5) converges to zero and hence
(xnyn − xy) converges to zero. But then by definition (xnyn) converges to xy.

(iv) This is a question on one of the Problem Sheets.

Examples 3.25 (i) Consider the sequence (xn) given by xn = c for all n ∈ N.
This sequence converges to c.

Proof. We must prove that (xn−c) converges to zero. But xn−c = 0 for all
n ∈ N and we already know that the zero sequence converges to zero.

(ii) xn = 3n2+5n+2
2n2+n+1

. This sequence converges to 3
2 .

Proof. We write xn in the form

xn =
3 + 5

n + 2
n2

2 + 1
n + 1

n2

.

But (3 + 5
n + 2

n2 ) converges to 3 + 0 + 0 = 3. [This uses Theorem 3.24 (ii)
and the facts that the constant sequence 3 converges to 3 while ( 5

n) and
( 2
n2 ) converge to zero – the latter due to Lemma 3.4 and Lemma 3.6, as

seen several times before.]

Similarly, (2 + 1
n + 1

n2 ) converges to 2 + 0 + 0 = 2, again by Theorem 3.24
(ii) [and the fact that ( 1

n) and ( 1
n2 ) converge to zero].

In a last step, we then apply Theorem 3.24 (iv) to conclude that (xn)
converges to 3

2 .

Lemma 3.26 (Limits are unique)
If (xn)∞n=1 converges to x ∈ R and also converges to y ∈ R then x = y. That is:
if a limit exists, then it is unique.

Proof. Suppose x 6= y. Without loss of generality, assume y > x and write α for the
difference y − x = |y − x|.
Since (xn) converges to x, we know that ∃Nx ∈ N such that ∀n > Nx, we have
|xn − x| < α

2 .

Similarly, since (xn) converges to y, we know that ∃Ny ∈ N such that ∀n > Ny, we
have |xn − y| < α

2 .

Now consider some xn with n ≥ max{Nx, Ny}. This xn satisfies |xn − x| < α
2 and
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|xn − y| < α
2 . Hence, using the triangle inequality,

|y − x| ≤ |y − xn|+ |xn − x| = |xn − y|+ |xn − x| <
α

2
+
α

2
= α.

So |y − x| < α, contradicting our definition of α as |x− y|.  

Lemma 3.27
Suppose we have two sequences (xn) and (yn) with xn → x and yn → y as
n→∞. Suppose further that xn ≤ yn for all n ∈ N. Then x ≤ y.

Proof. Suppose for a contradiction that x > y. Take ε = x−y
2 > 0. Since xn → x

there exists Nx ∈ N such that ∀n > Nx : |xn − x| < ε. This in particular implies:

∀n > Nx : xn > x− ε = x− x− y
2

=
x+ y

2
.

Similarly since yn → y there exists Ny ∈ N such that ∀n > Ny : |yn − y| < ε. This
in particular implies:

∀n > Ny : yn < y + ε = y +
x− y

2
=
x+ y

2
.

Set N = max{Nx, Ny}. Then for n > N we have

x+ y

2
< xn ≤ yn <

x+ y

2

which is a contradiction.  

Examples 3.28 (i) If (xn)∞n=1 converges to x ∈ R and there exists a constant
c ∈ R such that xn ≤ c for all n ∈ N, then x ≤ c.

Proof. We know that (yn) defined by yn = c for all n ∈ N converges to c.
We can then apply Lemma 3.27 to (xn) and this choice of (yn).

Similarly, if (xn)∞n=1 converges to x ∈ R and there exists a constant c ∈ R
such that xn ≥ c for all n ∈ N, then x ≥ c.

(ii) If the inequality xn ≤ yn in Lemma 3.27 is replaced by a strict inequality
xn < yn, we still can only conclude x ≤ y and not x < y. An example
for this is xn = 0 and yn = 1

n for all n ∈ N. Although we have xn < yn
for all n ∈ N, both sequences converge to zero, so x = limn→∞ xn = 0 and
y = limn→∞ yn = 0 and we have x = y.
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Lemma 3.29 (The sandwich principle)
If (yn) is some sequence and (xn) and (zn) are two converging sequences such
that xn ≤ yn ≤ zn and limn→∞ xn = limn→∞ zn, then (yn) converges as well and
limn→∞ yn = limn→∞ xn.

Proof. This is a question on the next Problem Sheet.

3.C Monotonic sequences

Definition 3.30 (Monotonic sequences)
Let (xn)∞n=1 be a sequence.

• We say (xn) is an increasing sequence if xn+1 ≥ xn for all n ∈ N.

• We say (xn) is strictly increasing if xn+1 > xn for all n ∈ N.

• We say (xn) is a decreasing sequence if xn+1 ≤ xn for all n ∈ N.

• We say (xn) is strictly decreasing if xn+1 < xn for all n ∈ N.

• We say (xn) is monotonic if it is either increasing or decreasing.

Examples 3.31 (i) xn = 1
n is strictly decreasing since 1

n+1 <
1
n for all n ∈ N.

Similarly, xn = 3 + 1
n is strictly decreasing as well.

(ii) xn = − 1
n and xn = 2− 1

n are strictly increasing.

(iii) xn = 1 for all n ∈ N is both increasing and decreasing (but not strictly).

(iv) xn = n is strictly increasing.

(v) xn = (−1)n
n is neither increasing nor decreasing.

(vi) xn = (−1)n is also neither increasing nor decreasing.

The sequences in the examples (i)–(iii) are monotonic and bounded, and all of them
converge to a limit in R. Example (iv) is monotonic but not bounded and it does
not converge to a limit in R. Examples (v) and (vi) are bounded but not monotonic;
the first does converge to a limit in R and the second does not. The next theorem
says that the fact that (i)–(iii) converge is not just a coincidence.

Theorem 3.32 (Bounded monotonic sequences converge)
If (xn)∞n=1 is a increasing sequence which is bounded above, then (xn) converges
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to some real number.

-

6
R

N
1 2 3 4 5

s s s s s s s s s s s s
upper
bound
least
upper
bound

The set A := {xn : n ∈ N} is a non-empty set of real numbers which is bounded
above (by the hypothesis of the theorem). So by the Completeness Axiom for R it
has a least upper bound, x = sup(A) (we will also denote this as x = supn∈N xn).
We aim to prove that (xn) converges to this x.

Proof. Define x = supn∈N xn. We must show that

∀ε > 0 ∃N ∈ N ∀n > N : |xn − x| < ε.

Suppose we are given ε > 0. We know that x − ε is not an upper bound for the
sequence (since x is the least upper bound). Hence there is some element of the
sequence, say xN which satisfies xN > x− ε.

Because xn is an increasing sequence, we now know that ∀n > N we have xn ≥
xN > x − ε. Moreover, x is an upper bound, so ∀n > N , we have xn ≤ x < x + ε.
Hence |xn − x| < ε.

Remark 3.33
We don’t really need to know the actual value of the limit in this theorem. We
are proving that the limit exists.

Examples 3.34 (i) One way to specify the value of π is as the limit of the
increasing sequence of rational numbers

3, 3.1, 3.14, 3.141, 3.1415, . . .

This is an increasing sequence which is bounded above (e.g. by 3.2), so by
Theorem 3.32 there exists a real number to which this sequence converges.
We call this real number π.
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(ii) xn = n−1
n . This is the sequence 0, 12 ,

2
3 ,

3
4 , . . .. It is increasing and bounded

above by 1 (for example). So by Theorem 3.32 it converges to a limit. In
this case, we know what the limit is: Since n−1

n = 1− 1
n , we know that the

limit is 1 (by Theorem 3.24 (ii)).

(iii) xn =
∑n

k=0
1
k! (where 0! = 1). This is the sequence

x1 = 1 +
1

1!
= 2,

x2 = 1 +
1

1!
+

1

2!
=

5

2
= 2.5,

x3 = 1 +
1

1!
+

1

2!
+

1

3!
=

5

2
+

1

6
=

8

3
= 2.666 . . . .

It is (strictly) increasing since xn+1 − xn = 1
(n+1)! > 0. It is also bounded

above. To prove this, we observe that 1
k! = 1

k ·
1

k−1 · · · · ·
1
2 ≤

1
2k−1 if k ≥ 2.

So

xn = 1 +
1

1!
+

1

2!
+

1

3!
+ . . .

1

n!

≤ 1 + 1 +
1

2
+

1

4
+ . . .+

1

2n−1︸ ︷︷ ︸
= 2n−1−1

2n−1 <1

,

so xn < 3 for all n ∈ N. Since (xn) is increasing and bounded above, we
can deduce from Theorem 3.32 that it converges to a real number. This
real number is denoted “e”.

It can be proved that e is not a rational number and in fact that it is not
a root of any polynomial equation with integer coefficients (we say that
e is “transcendental”). To define e, we need to express it as an infinite
sum

∑∞
k=0

1
k! . When we do this, we are using Theorem 3.32 (or a result

equivalent to it).

Note that here we used

1

2
+

1

4
+ . . .+

1

2n−1
=

n−1∑
k=1

1

2k
=

2n−1 − 1

2n−1
.

You might remember this formula from your Calculus class, but we will
give a precise proof of it at a later stage (Lemma 4.10).

What about increasing sequences which are not bounded above?

Definition 3.35 (Tending to infinity)
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We say that the sequence (xn)∞n=1 tends to infinity if

∀K ∈ R ∃N ∈ N ∀n > N : xn > K. (3.6)

In the literature, this is sometimes also called convergence to infinity. But note that
“∞” is not a real number, so this is not the same as the definition of convergence
to a real number! Also note that the “winning condition” in (3.6) is xn > K and
not just |xn| > K.

Examples 3.36 (i) xn = n. To prove this tends to infinity, we must show that

∀K ∈ R ∃N ∈ N ∀n > N : n > K.

We have seen that this is true in the chapter on real numbers. Our winning
strategy for the Demon Game corresponding to (3.6) is: Given K ∈ R, let
N =

⌈
|K|
⌉
. This number exists by the Archimedean property (Theorem

2.14). Now given any n > N , we have n > N =
⌈
|K|
⌉
, so n > |K| ≥ K.

(ii) xn =
√
n. To prove that this tends to infinity, we must show that

∀K ∈ R ∃N ∈ N ∀n > N :
√
n > K.

Proof. Given K ∈ R, let N = dK2e. Now given any n > N , we have
n > N = dK2e, so n > K2, and thus

√
n > |K| = K.

(iii) xn = cn, where c > 1 is a real constant. To prove that cn tends to ∞, we
must prove

∀K ∈ R ∃N ∈ N ∀n > N : cn > K.

Proof. If c > 1 then 1
c < 1 and we know from Theorem 3.14 that (1c )

n

converges to zero. So given any K > 0, we know that ∃N such that
(1c )

n < 1
K for all n > N . Thus cn > K for all n > N . If K ≤ 0, then

cn > K holds for all n ∈ N. Hence, we proved that cn tends to infinity.

Comment: If c < −1 then it is not true that cn tends to ∞. Although the
even powers of c will tend to ∞, the odd powers will tend to −∞.

Theorem 3.37 (Increasing sequences converge or tend to infinity)
Suppose (xn)∞n=1 is increasing. Then either (xn) converges or it tends to infinity.

Proof. If the sequence is bounded above, then it converges (by Theorem 3.32). So
suppose that (xn) is not bounded above. We shall prove that then (xn) tends to
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infinity, i.e. we shall prove that

∀K ∈ R ∃N ∈ N ∀n > N : xn > K.

Given K ∈ R, we know that K is not an upper bound for (xn) (since the sequence
is not bounded above, i.e. has no upper bounds). Therefore, there exists some xN
in the sequence with xN > K. Now for all n > N we have xn ≥ xN > K (using
that (xn) is increasing).

Remark 3.38
Similarly, decreasing sequences either converge (if they are bounded below) or
tend to −∞. We leave it as an exercise to define precisely what it means that a
sequence tends to −∞ and to prove these results.

3.D Subsequences

Intuitively and informally, a subsequence of (xn)∞n=1 = x1, x2, x3, x4, . . . is a sequence
like x1, x3, x5, x7, . . . or x2, x3, x5, x7, x11, . . .. We take just some of the terms of the
original sequence but we take infinitely many of them and we take them in the same
order as the original sequence. In the examples above, we took the xn where n is
odd or the ones where n is a prime, but in general there does not have to be such a
rule!

Definition 3.39 (Subsequence)
A subsequence of (xn)∞n=1 is a sequence xr1 , xr2 , xr3 , . . . where rj ∈ N for each
j ∈ N and rj+1 > rj for each j ∈ N. We also denote this as (xrj )

∞
j=1.

Examples 3.40 (i) x2, x4, x6, . . . is a subsequence of (xn)∞n=1. Here, we took
r1 = 2, r2 = 4, r3 = 6, etc. So rj = 2j and the subsequence can be written
as (x2j)

∞
j=1.

(ii) x1, x4, x9, x16, . . . is another subsequence. Here we have chosen rj = j2, so
the subsequence can be expressed as (xj2)∞j=1.

Remark 3.41
If we regard a sequence (xn) as a function N → R, n 7→ xn, then a subsequence
of (xn) is a composite function N → N → R, j 7→ rj 7→ xrj , where j 7→ rj is
injective and order-preserving (i.e., strictly increasing).

Very often a sequence which does not converge has subsequences which do converge!
For example xn = (−1)n. Here x1, x3, x5, . . . is a subsequence which converges to
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−1 (in fact all the terms are −1) and x2, x4, x6, . . . is a subsequence which converges
to +1 (in fact all the terms are +1). The following theorem, which is of great
importance later in the course, says that this is true in general.

Theorem 3.42 (Bolzano–Weierstrass, Version 1)
Every bounded sequence contains a convergent subsequence.

Proof. (The proof of this theorem is non-examinable.)

By Theorem 3.32 (“increasing bounded sequences converge”) and its analogue for
decreasing sequences, it will be enough to prove that every sequence of real numbers
has a monotonic subsequence.

Suppose we are given a sequence (xn)∞n=1. There are two possibilities:

Case 1: For every N ∈ N the set {xn : n ≥ N} has a maximum.
Case 2: For some N ∈ N the set {xn : n ≥ N} does not have a maximum.

If we are in Case 1, we select a subsequence as follows:

1. Pick r1 such that xr1 = max{xn : n ≥ 1},
2. pick r2 > r1 such that xr2 = max{xn : n ≥ r1 + 1},
3. pick r3 > r2 such that xr3 = max{xn : n ≥ r2 + 1},

and so on. Now xr1 ≥ xr2 ≥ xr3 ≥ . . . since we are taking the maximum of smaller
and smaller sets. That is, we found a decreasing subsequence.

If we are in Case 2, we let r1 = N , so that xr1 = xN . Then as {xn : n ≥ N} does
not have a maximum, there exists some r2 > N = r1 with xr2 > xr1 . Moreover, the
set {xn : n ≥ r2} cannot have a maximum. (If it did, say it had a maximum M ,
then max{xN , xN+1, xN+2, . . . , xr2−1,M} would be a maximum for {xn : n ≥ N}.)
Thus there exists some r3 > r2 with xr3 > xr2 . Repeating this argument gives an
increasing sequence xr1 < xr2 < xr3 < . . ..

Definition 3.43 (Accumulation point)
A real number x ∈ R is called an accumulation point of a sequence (xn) if for
every ε > 0 there are infinitely many elements of the sequence which lie ε-close
to x (i.e., satisfy |xn − x| < ε). This means, x is an accumulation point of (xn)
if and only if

∀ε > 0 ∀N ∈ N ∃n > N : |xn − x| < ε. (3.7)

Lemma 3.44 (Limit is an accumulation point)
If (xn) converges to x ∈ R, then x is an accumulation point.
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Of course, if (xn) converges to x, then (by definition), given ε > 0 there exists
N ∈ N such that all xn with n > N lie ε-close to x (and thus in particular infinitely
many). But let us formally prove this, using the precise mathematical definitions of
convergence (3.4) and accumulation point (3.7).

Proof. We need to prove (3.7). So we are given ε > 0 and N ∈ N (picked by the
Demon) and we need to find n > N such that |xn − x| < ε.

Since xn → x as n → ∞, we know by definition of convergence that for the given
ε > 0, there exists some Ñ such that ∀n > Ñ : |xn − x| < ε. (Here we relabelled
N to Ñ in the definition of convergence, because N is already used with a different
meaning.)

Now, we can pick n := max{N, Ñ}+ 1. This choice of n is allowed because n > N .
From n > Ñ , we conclude that |xn − x| < ε, which is what we wanted to show.

In general, a sequence can have an accumulation point even if it does not converge
and it can have several accumulation points. (Later – on one of the Problem Sheets
– we will actually find an example that has infinitely many accumulation points!)

Example 3.45
Let xn = (−1)n. Then we know that (xn) does not converge. But both x = +1
and x′ = −1 are accumulation points for (xn).

Proof. For x = +1: Given any ε > 0 and any N ∈ N, let n := 2N so that n > N
and n even. Then |xn − 1| = |1− 1| = 0 < ε.

For x′ = −1: Given any ε > 0 and any N ∈ N, let n := 2N + 1 so that n > N
and n odd. Then |xn − (−1)| = |(−1)− (−1)| = 0 < ε.

We also know that the subsequence (x2j)
∞
j=1 converges to +1 and the subsequence

(x2j+1)
∞
j=1 converges to −1. So both accumulation points are actually limits of

subsequences. This is true in general, as the following lemma shows.

Lemma 3.46
The real number x ∈ R is an accumulation point of (xn)∞n=1 if and only if there
is a subsequence (xrj )

∞
j=1 converging to x.

Proof. Suppose there is a subsequence (xrj )
∞
j=1 converging to x. Then for any ε > 0,

there is J ∈ N such that all the elements of the subsequence (xrj ) with j > J satisfy
|xrj − x| < ε. In particular, there are infinitely many. (One can write this more
formally, as we have done in the proof of Lemma 3.44. I leave this as an exercise.)

Conversely, if x is an accumulation point, then we can construct a subsequence
converging to x as follows: From (3.7), for ε = 1 and N = 1, we can find r1 > 1 such
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that |xr1 − x| < ε = 1. Then, using (3.7) again, this time with ε = 1/2 and N = r1,
we can find r2 > r1 with |xr2 − x| < ε = 1/2. We then iterate this, i.e., if xrj−1 is
already constructed, we use (3.7) with ε = 1

j and N = rj−1 to find some rj > rj−1

with |xrj − x| < 1
j . Clearly, the subsequence (xrj )

∞
j=1 then converges to x.

We can now restate Theorem 3.42.

Theorem 3.47 (Bolzano–Weierstrass, Version 2)
Every bounded sequence of real numbers has an accumulation point.

Proof. This follows by combining the first version of the theorem with Lemma 3.46.

The following lemma is often useful.

Lemma 3.48
Suppose that (xn)∞n=1 converges to x ∈ R. Then every subsequence (xrj )

∞
j=1 also

converges to x.

Proof. Suppose that xn → x and fix ε > 0. There exists an N ∈ N such that for
n > N we have |xn − x| < ε. Choose J ∈ N such that rJ ≥ N . Then for j > J we
have rj > rJ ≥ N and so |xrj − x| < ε as required.

The preceding lemma provides an easy way to prove that a given sequence does
not converge: identify two subsequences which converge to two different values (or,
identify a single subsequence which does not converge).

3.E Cauchy sequences

If a bounded sequence is not monotonic, how can we prove that it is convergent if
we don’t have a candidate for the limit? We start with an easy result.

Lemma 3.49
Suppose that (xn)∞n=1 converges to some x ∈ R. Then the sequence (yn)∞n=1

defined by yn = xn+1 − xn converges to zero.

Proof. We first observe that limn→∞ xn+1 = limn→∞ xn = x. (This is “obvious”,
but we should still make sure we can formally prove it! See the next Problem Sheet.)

Then, using Theorem 3.24 (ii), we have

lim
n→∞

yn = lim
n→∞

(xn+1 − xn) = lim
n→∞

xn+1 − lim
n→∞

xn = x− x = 0.
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We can also give a direct proof. Given ε > 0 set ε̃ = ε/2. Since xn → x there is an
N ∈ N such that ∀n > N : |xn − x| < ε̃. Then for n > N we have

|yn| = |xn+1− xn| = |(xn+1− x)− (xn− x)| ≤ |xn+1− x|+ |xn− x| < ε̃+ ε̃ = ε.

Examples 3.50 (i) Let xn = n−1
n . Then we know that xn → 1 as n→∞. So

we obtain yn = xn+1 − xn = n
n+1 −

n−1
n → 0 as n → ∞. (Indeed, we can

easily check that yn = n2−(n−1)(n+1)
n(n+1) = 1

n(n+1) → 0 as n→∞.)

(ii) Let xn = (−1)n. Then |yn| = |xn+1 − xn| = 2 for all n ∈ N and hence (yn)
does not converge to zero. By Lemma 3.49, (xn) can thus not converge to
any real number x ∈ R (as we have already seen before).

Note that the converse of Lemma 3.49 is false!

Examples 3.51 (i) Let xn =
√
n. Then the sequence (xn) does not converge

to any real number. But the sequence yn = xn+1−xn =
√
n+ 1−

√
n does

converge to zero (as we have seen in the Problem Sheet).

(ii) Let xn = 1+ 1
2 + 1

3 + 1
4 + . . .+ 1

n =
∑n

k=1
1
k . This sequence does not converge

(we have actually already seen this in Chapter 0, but will see it again more
precisely below). Nevertheless yn = xn+1−xn = 1

n+1 does converge to zero.

This means that for (xn)∞n=1 to converge to some x ∈ R it is necessary that the
sequence (xn+1 − xn)∞n=1 converges to zero, but this condition is not sufficient. The
goal of this section is to find a sufficient condition! For this reason, let us rephrase
first the result from Lemma 3.49 using a quantifier statement.

Lemma 3.49 says that if (xn) converges to some x ∈ R, then

∀ε > 0 ∃N ∈ N ∀n > N : |xn+1 − xn| < ε.

(This is nothing else than the definition of yn = xn+1 − xn → 0 for n → ∞.) The
following definition generalises this idea, testing not only the distance of xn and xn+1

(for n > N) but actually all the distances of xn to xm for n and m both greater
than N .

Definition 3.52 (Cauchy sequence)
A sequence (xn)∞n=1 is called a Cauchy sequence if and only if

∀ε > 0 ∃N ∈ N ∀n > N ∀m > N : |xm − xn| < ε. (3.8)
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Theorem 3.53 (Equivalence of Cauchy sequences and convergent sequences)
Let (xn)∞n=1 be a sequence of real numbers. Then (xn)∞n=1 converges if and only
if it is a Cauchy sequence.

Proof. (The proof of this theorem is non-examinable.)

We first show: Convergent sequences are Cauchy sequences.

Assume that there is some x ∈ R such that xn → x as n → ∞. We have to prove
that (xn) is a Cauchy sequence. So, we are given ε > 0 (by the Demon). Then by
the definition of convergence, letting ε̃ = ε

2 , we can find some N such that for all
n > N we have |xn − x| < ε̃ = ε

2 . We pick exactly this N . Then for all n,m > N ,
we have

|xm − xn| ≤ |xm − x|+ |x− xn| < ε̃+ ε̃ = ε
2 + ε

2 = ε.

Now we prove: Cauchy sequences do converge. We do this in several steps.

Step 1. Cauchy sequences are bounded: For ε = 1 (in the definition of a Cauchy
sequence), we can find N1 such that for all n,m > N1 we have |xm − xn| < 1. In
particular, letting n = N1 + 1 be fixed, we find that for all m > N1 we have

|xm| = |(xm − xN1+1) + xN1+1| ≤ |xm − xN1+1|+ |xN1+1| < 1 + |xN1+1|.

Thus the sequence is bounded, since for all m ∈ N we have:

|xm| ≤ max{|x1|, |x2|, . . . , |xN1 |, 1 + |xN1+1|}.

Step 2. We can find a convergent subsequence: Indeed, this is just an application
of the Theorem of Bolzano–Weierstrass (Theorem 3.42). So in particular, we have
a subsequence (xrj )

∞
j=1 and some number x ∈ R, such that xrj → x as j →∞.

Step 3. The whole sequence converges to x: As xrj → x, by definition of convergence
there is some N2 such that ∀rj > N2 : |xrj−x| < ε̃ = ε

2 . Moreover, by the definition
of a Cauchy sequence, there is some N3 such that ∀m,n > N3 : |xm− xn| < ε̃ = ε

2 .
Thus for any n > N := max{N2, N3}, we can pick some r` > N and estimate

|xn − x| ≤ |xn − xr` |+ |xr` − x| < ε̃+ ε̃ =
ε

2
+
ε

2
= ε.

So xn → x as n→∞.

While this theorem seems hard at first look, Cauchy sequences actually have a lot
of advantages:

• We have a condition that applies to all sequences (not just monotonic ones)
and tells us whether the sequence converges or not.
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• The statement is “if and only if”, so the Cauchy criterion is necessary and
sufficient.

• The theorem applies to sequences in Rn and C and Cn, not just to R. (In Rn,
by |xm − xn| we mean the distance between xm and xn.)

• Finally, there is an easier proof of the Bolzano–Weierstrass Theorem using
Cauchy sequences and it works in Rn, not just in R.
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4 Series

4.A Definition and first examples

A series is a “sum of an infinite number of terms”. Suppose (xn)∞n=1 is a sequence.
We define the partial sums of the series

∑∞
k=1 xk by Sn =

∑n
k=1 xk. So

S1 = x1,

S2 = x1 + x2,

S3 = x1 + x2 + x3,

· · ·
Sn = x1 + x2 + x3 + . . .+ xn.

We can ask whether the sequence (Sn)∞n=1 of the n-th partial sums converges, or
whether it tends to infinity, or whether it does neither.

Definition 4.1 (i) We say that
∑∞

k=1 xk exists (or converges) if the sequence
(Sn)∞n=1 converges. If Sn → S for some real number S then we write:

∞∑
k=1

xk = S.

(ii) We say that
∑∞

k=1 xk does not exist (or does not converge) if the sequence
(Sn)∞n=1 does not converge.

(iii) We write
∑∞

k=1 xk =∞ if Sn →∞. (If
∑∞

k=1 xk =∞ then
∑∞

k=1 xk “does
not exist” since ∞ is not a number.)

Examples 4.2 (i) Let us look at
∑∞

k=1 xk with xk = 1
k(k+1) = 1

k −
1

k+1 . Then

S1 = x1 = 1− 1
2 = 1

2 ,

S2 = x1 + x2 = 1− 1
2 + 1

2 −
1
3 = 1− 1

3 ,

· · ·
Sn = x1 + x2 + x3 + . . .+ xn = 1− 1

2 + 1
2 −

1
3 + 1

3 − . . .−
1
n + 1

n −
1

n+1

= 1− 1
n+1 .

(This is called a “telescoping sum”.) So (Sn)∞n=1 converges to 1. Hence∑∞
k=1

1
k(k+1) exists and is equal to 1.
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(ii) Let us look at
∑∞

k=0
1
k! . Here Sn =

∑n
k=0 xk is

S0 = 1
0! = 1,

S1 = 1
0! + 1

1! = 2,

· · ·

Sn = 1
0! + 1

1! + 1
2! + 1

3! + . . .+ 1
n!︸ ︷︷ ︸

≤ 1
2
+ 1

22
+...+ 1

2n−1

≤ 2 + 2n−1−1
2n−1 < 3,

i.e., Sn < 3 for all n ∈ N. Thus (Sn)∞n=0 is increasing (since Sn+1 − Sn =
1

(n+1)!), bounded above (e.g., by 3) and thus converges to a real number in

R which we denote by e. That is,
∑∞

k=0
1
k! exists and is equal to e.

Here, we have used the fact that 1
k! = 1

k ·
1

k−1 · · · · ·
1
2 ≤

1
2k−1 for k ≥ 2 as

well as
1

2
+

1

4
+ . . .+

1

2n−1
=

n−1∑
k=1

1

2k
=

2n−1 − 1

2n−1
< 1.

As mentioned before, this will be proved precisely in Lemma 4.10 below.

(iii)
∑∞

k=1
1√
k
. We have

S1 = 1√
1

= 1,

S2 = 1√
1

+ 1√
2
,

· · ·
Sn = 1√

1
+ 1√

2
+ . . .+ 1√

n

≥ 1√
n

+ 1√
n

+ . . .+ 1√
n

= n√
n

=
√
n.

So the sequence (Sn)∞n=1 does not converge to a real number. In fact, it
tends to infinity. So we say that

∑∞
k=1

1√
k

does not exist and we write∑∞
k=1

1√
k

=∞.

(iv) xk = (−1)k, i.e. we look at
∑∞

k=1(−1)k. We have

S1 = −1,

S2 = −1 + 1 = 0,

S3 = −1 + 1− 1 = −1,

S4 = −1 + 1− 1 + 1 = 0,

Sn =

{
0 if n is even,

−1 if n is odd.
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So (Sn)∞n=1 does not converge, and we say that
∑∞

k=1(−1)k does not exist.

4.B Some rules and criteria for convergence

There is an easy necessary condition for
∑∞

k=1 xk to exist (respectively an easy
sufficient condition for

∑∞
k=1 xk to not exist).

Theorem 4.3
If
∑∞

k=1 xk exists, then the corresponding sequence (xk)
∞
k=1 converges to zero.

(Therefore, if (xk)
∞
k=1 does not converge to zero, then

∑∞
k=1 xk does not exist.)

Proof. This is a direct application of Lemma 3.49. If
∑∞

k=1 xk exists, then by def-
inition the sequence of partial sums (Sn)∞n=1 converges (to some real number). So
by Lemma 3.49, (Sn+1 − Sn)∞n=1 converges to zero. But Sn+1 − Sn = xn+1, so the
sequence (xn+1)

∞
n=1 converges to zero and thus (xn)∞n=1 converges to zero.

Note that the converse to Theorem 4.3 is false. For example in Example 3.2(iii) above
the sequence (xk)

∞
k=1 converges to zero, but the sequence of partial sums (Sn)∞n=1

does not converge. Nevertheless, this theorem can be very useful to prove non-
convergence. For example in Example 3.2(iv) above, we know immediately that the
series

∑∞
k=1(−1)k cannot exist, since the sequence ((−1)k)∞k=1 does not converge to

zero.

More generally, using the Cauchy criterion for convergence of sequences, we get a
Cauchy criterion for the convergence of series.

Theorem 4.4 (Cauchy criterion)
The series

∑∞
k=1 xk exists if and only if

∀ε > 0 ∃N ∈ N ∀m > n > N :

∣∣∣∣ m∑
k=n+1

xk

∣∣∣∣ < ε.

Proof. By definition,
∑∞

k=1 xk exists if and only if the sequence of partial sums (Sn)
converges. By Theorem 3.53, (Sn) converges if and only if it is a Cauchy sequence,
i.e. if and only if

∀ε > 0 ∃N ∈ N ∀m > n > N : |Sm − Sn| < ε.

But |Sm − Sn| = |
∑m

k=1 xk −
∑n

k=1 xk| = |
∑m

k=n+1 xk|.

In the Problem Sheets, we have seen that convergent sequences build a ring and a
vector space. Can we do the same for convergent series?
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Lemma 4.5
If
∑∞

k=1 xk = S and
∑∞

k=1 yk = T (i.e. both exist) then
∑∞

k=1(xk + yk) = S + T .

Proof. Let Sn =
∑n

k=1 xk and Tn =
∑n

k=1 yk. So we have Sn → S and Tn → T as
n→∞. Moreover, let Un =

∑n
k=1(xk + yk). We must show that (Un)∞n=1 converges

to S + T . But

Un =

n∑
k=1

(xk + yk) =

n∑
k=1

xk +

n∑
k=1

yk = Sn + Tn

by commutativity of addition in R. So (Un)∞n=1 is the sequence with Un = Sn + Tn
and hence by Theorem 3.24(ii) (Un) converges to S+T . Hence

∑∞
k=1(xk+yk) exists

and is equal to S + T .

Lemma 4.6
If
∑∞

k=1 xk = S and c ∈ R then
∑∞

k=1 cxk = cS.

Proof. This is very similar to the proof of the lemma above. It is a question on the
Problem Sheet.

Remark 4.7
The previous two lemmas imply that the set of convergent series forms a vector
space (details are left as an exercise). However, this set does not necessarily form
a ring, as products of infinite series are not straightforward. It is very rarely true
that

∞∑
k=1

xkyk =
( ∞∑
k=1

xk

)( ∞∑
k=1

yk

)
since such an identity fails even for finite sums!

Our last easy convergence criterion is similar to the dominated convergence for
sequences.

Theorem 4.8 (Comparison test)
Suppose (xk)

∞
k=1 and (yk)

∞
k=1 are sequences of real numbers such that 0 ≤ yk ≤ xk

for all k ∈ N. Then if
∑∞

k=1 xk exists, it follows that
∑∞

k=1 yk exists. Moreover,∑∞
k=1 yk ≤

∑∞
k=1 xk.

Remark 4.9
We require here that both sequences (xk) and (yk) consist only of non-negative
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elements!

Proof. Write Sn =
∑n

k=1 xk and Tn =
∑n

k=1 yk. We know that (Sn)∞n=1 converges
(to some real number S ∈ R). We want to prove that (Tn)∞n=1 also converges (to
some real number T ≤ S). But because (Tn)∞n=1 is a increasing sequence (since
yk ≥ 0 for all k), we know that it converges if we can show that it is bounded above
(by Theorem 3.32 we know that bounded monotonic sequences converge).

But we have Tn ≤ Sn for all n ∈ N as yk ≤ xk for all k ∈ N. Moreover, as (Sn)∞n=1

is increasing and converges to S, we have Sn ≤ S for all n ∈ N. Hence Tn ≤ Sn ≤ S
for all n ∈ N, i.e. (Tn) is bounded above. So we see that (Tn) converges to some T .
We want to finally show that T ≤ S, but this follows directly from Lemma 3.27.

4.C Specific series and more examples

We first have a look at some specific series: geometric series and the harmonic series.
Then, we construct more examples using our old examples from before, these specific
series and the rules from the last section.

Geometric series: We first prove a lemma for the partial sums of a geometric series.

Lemma 4.10
We have Sn =

∑n
k=1 ar

k−1 = a(rn−1)
r−1 if r 6= 1.

Proof. We have

Sn =
n∑
k=1

ark−1 = a+ ar + ar2 + . . . arn−1.

Multiplying by r yields

rSn = r

n∑
k=1

ark−1 = ar + ar2 + . . . arn−1 + arn.

Subtracting the first equation from the second gives a telescoping sum:

(r − 1)Sn = arn − a = a(rn − 1),

and hence if r 6= 1, we have

Sn =
a(rn − 1)

r − 1
=
a(1− rn)

1− r
.

Theorem 4.11 (Geometric series)
Suppose a ∈ R, a 6= 0 and r ∈ R. Let (xk)

∞
k=1 be given by xk = ark−1. Then
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(i) if |r| < 1, then
∑∞

k=1 xk exists and equals a
1−r .

(ii) if |r| ≥ 1, then
∑∞

k=1 xk does not exist.

Proof.

(i) For the partial sums, we have by Lemma 4.10 that Sn =
∑n

k=1 xk = a(1−rn)
1−r ,

so if |r| < 1 we deduce that limn→∞ Sn exists and is equal to a
1−r (since by

Theorem 3.14, rn → 0 as n→∞ and thus by Theorem 3.24(ii) Sn → a(1−0)
1−r =

a
1−r ). Since

∑∞
k=1 xk is defined to be limn→∞ Sn, we have proved that

∑∞
k=1 xk

exists and equals a
1−r .

(ii) If |r| ≥ 1, then |xk| = |ark−1| = |a||r|k−1 ≥ |a|. So (xk) does not converge
to zero as k goes to ∞ and therefore

∑∞
k=1 xk does not exist (by Theorem

4.3).

Harmonic series: As already seen in the introduction, the harmonic series does not
converge.

Theorem 4.12 (Harmonic series)
We have

∑∞
k=1

1
k =∞.

Proof. We estimate

S2m = 1 +
1

2
+

1

3
+

1

4︸ ︷︷ ︸
> 1

2

+
1

5
+

1

6
+

1

7
+

1

8︸ ︷︷ ︸
> 1

2

+ . . .+
1

2m
≥ 1 +m · 1

2
.

We want to prove that Sn tends to ∞, i.e., we want to show that

∀K ∈ R ∃N ∈ N ∀n > N : Sn > K (*)

For K ≤ 0, Sn > K is always true. So we assume that we are given K > 0 (by the
Demon). Choose m ∈ N with m ≥ 2K − 2 and set N = 2m. Then for n > N we
have

Sn > SN = S2m ≥ 1 +
m

2
≥ K.

The series
∑∞

k=1
1
k2

: This series exists!

Theorem 4.13
The series

∑∞
k=1

1
k2

exists.
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Proof. For k ∈ N we have k ≥ k+1
2 and therefore k2 ≥ k k+1

2 . Hence

0 ≤ 1

k2
≤ 2

k(k + 1)
.

But 1
k(k+1) = 1

k −
1

k+1 and we have seen in Example 3.2 that
∑∞

k=1(
1
k −

1
k+1) ex-

ists. Hence
∑∞

k=1
2

k(k+1) exists (by Lemma 4.6) and hence
∑∞

k=1
1
k2

exists by the
comparison test, Theorem 4.8.

Remark 4.14
This theorem tells us that

∑∞
k=1

1
k2

exists, but it does not tell us the value of this
infinite sum, only that

∞∑
k=1

1

k2
≤
∞∑
k=1

2

k(k + 1)
= 2.

In fact, one can show that
∑∞

k=1
1
k2

= π2

6 . This is best proved using complex
analysis.

Remark 4.15
One can prove that

∑∞
k=1

1
kα exists if and only if α > 1.

Examples 4.16 (i) Does the sum
∑∞

k=1
1

2k+k
exist?

We have 0 ≤ 1
2k+k

≤ 1
2k

and we know that
∑∞

k=1
1
2k

exists (by Theorem

4.11). Hence by the comparison test, Theorem 4.8,
∑∞

k=1
1

2k+k
exists.

(ii) We have seen before that
∑∞

k=1
1
k! exists. We can give an easier proof of

this, using that 0 ≤ 1
k! ≤

1
2k−1 for all k ∈ N. As

∑∞
k=1

1
2k−1 exists (by

Theorem 4.11), we obtain from the comparison test that
∑∞

k=1
1
k! exists.

(iii)
∑∞

k=1
1√
k

does not exist according to Example 3.2. We can give a shorter

proof of this fact: As 0 ≤ 1
k ≤

1√
k
, if

∑∞
k=1

1√
k

would exist, then by the

comparison test also
∑∞

k=1
1
k would exist. But Theorem 4.12 tells us that

this is not the case, so
∑∞

k=1
1√
k

does not exist.

What about series where some of the terms are negative?

4.D Absolute convergence
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Definition 4.17
We say that

∑∞
k=1 xk converges absolutely if

∑∞
k=1|xk| exists.

Theorem 4.18 (Absolute convergence implies convergence)
If
∑∞

k=1|xk| exists then
∑∞

k=1 xk exists.

Proof. Given a sequence (xk)
∞
k=1 in R, define

x+k :=

{
xk if xk ≥ 0,

0 if xk < 0,

and

x−k :=

{
−xk if xk ≤ 0,

0 if xk > 0.

We observe that

(i) xk = x+k − x
−
k for all k ∈ N,

(ii) 0 ≤ x+k ≤ |xk| for all k ∈ N,

(iii) 0 ≤ x−k ≤ |xk| for all k ∈ N.

Therefore, by the comparison test, Theorem 4.8,
∑∞

k=1 x
+
k exists and

∑∞
k=1 x

−
k exists.

Thus, by Lemma 4.5,
∑∞

k=1 xk =
∑∞

k=1(x
+
k − x

−
k ) exists.

Example 4.19
Let us look at the series

∞∑
k=1

sin k

2k
.

Does it exist? We notice that this series converges absolutely, since | sin(k)
2k
| ≤ 1

2k

for all k ∈ N and we know that
∑∞

k=1
1
2k

exists, so
∑∞

k=1|
sin k
2k
| exists by the

comparison test. Theorem 4.18 then shows that
∑∞

k=1
sin k
2k

exists.

One can “re-order” an absolutely convergent series.

Theorem 4.20 (Re-ordering an absolutely convergent series)
Let

∑∞
k=1 xk be absolutely convergent and φ : N → N a bijection. Then the
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re-ordered series
∑∞

k=1 xφ(k) exists and

∞∑
k=1

xk =

∞∑
k=1

xφ(k).

Proof. (The proof of this theorem is non-examinable.)

We aim to use the Cauchy criterion (Theorem 4.4) to show existence of
∑∞

k=1 xφ(k);
that is, we want to show that

∀ε > 0 ∃N ∈ N ∀m > n > N :
∣∣∣ m∑
k=n+1

xφ(k)

∣∣∣ < ε.

Let Sn =
∑n

k=1 |xk| be the partial sum. Let ε > 0 be given (by the Demon). Then
as (Sn)∞n=1 is increasing and converges to S =

∑∞
k=1 |xk|, we can find N1 ∈ N such

that |SN1 − S| = S − SN1 < ε. That is,

∞∑
k=N1+1

|xk| =
∞∑
k=1

|xk| −
N1∑
k=1

|xk| < ε. (4.1)

Now set N := max{φ−1(1), . . . , φ−1(N1)}. For any k > N we have k /∈ {φ−1(1), . . . ,
φ−1(N1)} and hence φ(k) /∈ {1, . . . , N1}, where we have used the fact that φ is
injective. In other words, k > N implies φ(k) > N1. Therefore, with this choice
of N , we find

∀m > n ≥ N :
∣∣∣ m∑
k=n+1

xφ(k)

∣∣∣ ≤ m∑
k=n+1

∣∣xφ(k)∣∣ ≤ ∞∑
k=N1+1

|xk| < ε.

Thus, by the Cauchy criterion, the re-ordered series exists. Notice that by setting
n = N above, we have that

∑m
k=N+1

∣∣xφ(k)∣∣ < ε, for all m > N , and so

∞∑
k=N+1

∣∣xφ(k)∣∣ ≤ ε. (4.2)

We now show that the rearranged series converges to the same value as the original
series. We have:∣∣∣ ∞∑

k=1

xk −
∞∑
k=1

xφ(k)

∣∣∣ =
∣∣∣ N1∑
k=1

xk +

∞∑
k=N1+1

xk −
N∑
k=1

xφ(k) −
∞∑

k=N+1

xφ(k)

∣∣∣
≤
∣∣∣ N1∑
k=1

xk −
N∑
k=1

xφ(k)

∣∣∣+
∣∣∣ ∞∑
k=N1+1

xk

∣∣∣+
∣∣∣ ∞∑
k=N+1

xφ(k)

∣∣∣
≤
∣∣∣ N1∑
k=1

xk −
N∑
k=1

xφ(k)

∣∣∣+

∞∑
k=N1+1

|xk|+
∞∑

k=N+1

∣∣xφ(k)∣∣
≤ 3ε.
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The steps in this estimate are justified as follows. In the second and third lines we
have used the triangle inequality. In the final step we have used (4.1) and (4.2) to
bound the second and third terms; also, the first term is a finite sum of terms taken
from the series

∑∞
k=N1+1 xk and is hence bounded by ε.

Since the above estimate holds all ε > 0, we conclude that
∑∞

k=1 xk =
∑∞

k=1 xφ(k).

What about series that do exist but do not converge absolutely?

Definition 4.21
A series

∑∞
k=1 xk is conditionally convergent if it converges but does not converge

absolutely.

Let us look at an example, namely the alternating harmonic series:

Theorem 4.22 (The alternating harmonic series exists)
The series

∞∑
k=1

(−1)k+1 1

k
= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ . . .

is conditionally convergent.

Proof. We have seen in Theorem 4.12 that the series does not converge absolutely.
We thus simply need to show that the series converges. For n,m ∈ N with m > n,
define

Sn,m =
m∑

k=n+1

(−1)k+1 1

k
.

If we can show that Sn,m is small when n,m are large, then the Cauchy Criterion
will tell us that the infinite sum

∑∞
k=1(−1)k+1 1

k exists.

If n is even then Sn,m = 1
n+1 −

1
n+2 + 1

n+3 − · · · ±
1
m . Grouping the terms in pairs,

Sn,m =
(

1
n+1 −

1
n+2

)
+
(

1
n+3 −

1
n+4

)
+ · · ·+

(
1

m−1 −
1
m

)
,

assuming m is even. (If m is odd then there is an unpaired term 1
m at the end.)

The terms are all positive, and hence Sn,m ≥ 0. Grouping into pairs in the other
possible way,

Sn,m = 1
n+1 −

(
1

n+2 −
1

n+3

)
− · · · −

(
1

m−1 −
1
m

)
,

where we have assumed m is odd. (There is an unpaired term − 1
m at the end if m

is even.) All terms other than the first are negative, and so Sn,m ≤ 1
n+1 .

A similar argument for n odd gives − 1
n+1 ≤ Sn,m ≤ 0. Summarising, in all cases

|Sn,m| ≤ 1
n+1 .
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Now apply Theorem 4.4 (the Cauchy Criterion). Given ε > 0, let N = d1/εe. Then,
for all m > n > N we have |Sn,m| ≤ 1

n+1 < 1/N ≤ ε. Hence the infinite sum∑∞
k=1(−1)k+1 1

k exists.

Remark 4.23
One can prove that

∑∞
k=1(−1)k+1 1

k = ln 2, the natural logarithm of 2, but we
will not do this in this course.

Now let us re-order the series with some bijective φ : N→ N which is chosen exactly
in such a way that the sum

∑∞
k=1 xφ(k) is given by

∞∑
k=1

xφ(k) = 1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+ . . . .

(That is φ(1) = 1, φ(2) = 2, φ(3) = 4, φ(4) = 3, φ(5) = 6, φ(6) = 8, φ(7) = 5,
φ(8) = 10, φ(9) = 12, etc.) As seen in the introduction, we obtain

∞∑
k=1

xφ(k) =
(

1− 1

2

)
− 1

4
+
(1

3
− 1

6

)
− 1

8
+
(1

5
− 1

10

)
− 1

12
+ . . .

=
1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
+ . . . =

1

2
ln 2.

So the value of the re-ordered sum is half the value of the original alternating har-
monic series! This might seem surprising, but we did not make a mistake! In fact,
we have the following general theorem.

Theorem 4.24 (Riemann rearrangement theorem)
Let

∑∞
k=1 xk be a conditionally convergent series. Then for any L ∈ R there

exists a bijection φL : N → N such that
∑∞

k=1 xφL(k) exists and has value L.
Moreover, there also exists a bijection φ∞ : N→ N such that

∑∞
k=1 xφ∞(k) =∞.

Proof. (The proof of this theorem is non-examinable.)

Step 1: We first prove that
∑∞

k=1 x
+
k = ∞ and

∑∞
k=1 x

−
k = ∞. (Recall that x+k

denotes xk when xk ≥ 0 and 0 otherwise, and that x−k denotes −xk when xk ≤ 0
and 0 otherwise.)

Since
∑∞

k=1 x
+
k and

∑∞
k=1 x

−
k are each sums of positive terms, each of these sums

either converges (to an element of R) or sums to ∞.

• It cannot be true that both
∑∞

k=1 x
+
k and

∑∞
k=1 x

−
k converge to elements of R

because then
∑∞

k=1|xk| =
∑∞

k=1(x
+
k + x−k ) would converge to an element of R.
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• It cannot be true that
∑∞

k=1 x
+
k converges and

∑∞
k=1 x

−
k = ∞, because this

would imply that
∑∞

k=1 xk =
∑∞

k=1(x
+
k − x

−
k ) = −∞.

• Similarly, it cannot be true that
∑∞

k=1 x
−
k converges and

∑∞
k=1 x

+
k = ∞, as

then
∑∞

k=1 xk =∞.

Hence both
∑∞

k=1 x
+
k =∞ and

∑∞
k=1 x

−
k =∞.

Step 2: Assume we are given L ∈ R, we construct φL.

It is easier to explain what to do if we first change the x+k , x
−
k notation to something

more convenient. Suppose the xk which are ≥ 0 are, in increasing order of their
numbering, y1, y2, y3, . . . and the xk’s which are < 0 are z1, z2, z3, . . . . We re-order
the xk’s as follows. First we take just enough of the yk’s to make their sum > L
(we can do this since the sum of all of them is infinity by Step 1). So we take
y1, y2, . . . , yi1 say. Next we take just enough of the zk’s to bring the sum down
below L, say z1, z2, . . . , zj1 . Then, we take just enough more of the yk’s to make
the sum > L again, starting with the first yk we have not used yet, so we take
yi1+1, . . . , yi2 for some i2. Then we take just enough more of the zk’s to make the
sum < L again, say zj1+1, . . . , zj2 . And so on. Each time we use up a finite number
(≥ 1) more of the yk’s or zk’s, so they all get used eventually, so this process will
really define a bijection φL : N→ N.

Step 3: We show that the re-ordered series satisfies
∑∞

k=1 xφL(k) = L.

Since at each stage we take just enough terms to move the sum to the other side
of L, we know that after the first stage the partial sum is within |yi1 | of L, after
the second stage it is within |zj1 | of L and so on. But since the sequence (xk)

∞
k=1

tends to zero (as
∑∞

k=1 xk converges) so do its subsequences (yim)∞m=1 and (zjm)∞m=1.
Hence the partial sums of our re-ordered sequence converge to L.

Similarly, one can construct φ∞ by taking just enough positive elements to make
the partial sum larger than 1, then take one negative element. Then, continue with
just enough positive elements to make the partial sum larger than 2 before taking
again one negative term. Next, we take enough positive terms to make the partial
sum larger than 3, etc. (The details are left as an exercise.)

4.E Ratio test

The following test is extremely useful in practice.

Theorem 4.25 (Ratio test for positive series)
Suppose that xk > 0 for all k ∈ N. Consider the sequence (xk+1/xk)

∞
k=1 and

suppose that (xk+1/xk)→ R for some R ∈ R ∪ {∞}.
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(i) If R < 1 then the series
∑∞

k=1 xk exists.

(ii) if R > 1 or R =∞ then
∑∞

k=1 xk does not exist.

If R = 1 then we are out of luck, and cannot conclude anything.

Proof. Start with (i), assume that R < 1. We first show that xk → 0.

Choose an ε1 > 0 such that R + ε1 < 1. Since xk+1/xk → R there exists N1 ∈ N
such that for k > N1 we have

|xk+1/xk −R| < ε1.

In particular we have xk+1/xk < R+ ε1 and since xk > 0 this implies

xk+1 < xk(R+ ε1). (4.3)

Inductively, we see that for k ≥ 2 we have

|xk| = xk < x1(R+ ε1)
k−1.

Since R+ε1 < 1 we have (R+ε1)
k−1 → 0 (Theorem 3.14) and hence from dominated

convergence (Lemma 3.4) we see that xk → 0.

We now show that
∑∞

k=1 xk exists, using the Cauchy criterion (Theorem 4.4). Fix
ε > 0. For m > n > N1 we have∣∣∣∣∣

m∑
k=n+1

xk

∣∣∣∣∣ =
m∑

k=n+1

xk <
m∑

k=n+1

xn+1(R+ ε1)
k−(n+1) = xn+1 ·

m−n∑
k=1

(R+ ε1)
k−1

where the inequality follows from (4.3). The latter sum is bounded above by the full
geometric series

m−n∑
k=1

(R+ ε1)
k−1 ≤

∞∑
k=1

(R+ ε1)
k−1 =: S

and we note that S > 0. Since xk → 0 there exists N2 ∈ N such that for k > N2:

|xk| < ε/S.

Let N = max{N1, N2}. Then for m > n > N we have∣∣∣∣∣
m∑

k=n+1

xk

∣∣∣∣∣ < xn+1 ·
m−n∑
k=1

(R+ ε1)
k−1 <

ε

S
· S = ε.

We conclude from the Cauchy criterion that
∑∞

k=1 xk exists. This completes the
proof of (i).
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Turning to (ii), assume that R > 1. Choose ε1 > 0 such that R − ε1 > 1. Since
xk+1/xk → R there exists N ∈ N such that for k > N we have

|xk+1/xk −R| < ε1.

In particular we have xk+1/xk > R− ε1 and since xk > 0 this implies

xk+1 > xk(R− ε1).

Inductively, we see that for k ≥ 2 we have

|xk| = xk > x1(R− ε1)k−1. (4.4)

Since R − ε1 > 1 we have by Theorem 3.14 that the sequence ((R − ε1)k−1)∞k=1 di-
verges. By Corollary 3.5 we conclude that (xk)

∞
k=1 diverges. It follows that

∑∞
k=1 xk

does not exist (Lemma 4.5).

The case R =∞ is similar and left as an exercise.

Theorem 4.26 (Ratio test for never-zero series)
Suppose that xk 6= 0 for all k ∈ N. Suppose that |xk+1|/|xk| → R for some
R ∈ R ∪ {∞}.

(i) If R < 1 then the series
∑∞

k=1 xk is absolutely convergent.

(ii) If R > 1 or R =∞ then the series
∑∞

k=1 xk does not exist.

Proof. Part (i) follows directly from Theorem 4.25 applied to the series
∑∞

k=1 |xk|.
For part (ii), suppose for a contradiction that

∑∞
k=1 xk exists. Then xk → 0 which

implies |xk| → 0. But similar to (4.4) above, we have

|xk| > |x1|(R− ε1)k−1

with R− ε1 > 1. This implies |xk| → ∞, a contradiction.

Example 4.27
Consider the series

∞∑
k=1

2k + 3k

3k + 4k
.

We will prove this converges using the ratio test. Letting xk = (2k+3k)/(3k+4k)
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we have

xk+1

xk
=

2k+1 + 3k+1

3k+1 + 4k+1
· 3k + 4k

2k + 3k

=
2k+1 + 3k+1

2k + 3k
· 3k + 4k

3k+1 + 4k+1

=
(23)k+1 + 1
1
3((23)k + 1)

·
1
4((34)k + 1)

(34)k + 1

→ 1

(1/3)
· (1/4)

1
=

3

4
< 1.

We conclude from the ratio test that the series converges. Similar examples can
be found on Problem Sheet 5.

4.F Power series

Consider the series
∞∑
k=0

xk

for x ∈ R fixed. We know that this converges when |x| < 1 and that it does not
converge when |x| ≥ 1 (Theorem 4.11). So we define a function

f : (−1,+1)→ R

f(x) =
∞∑
k=0

xk.

Theorem 4.11 gives us an alternative formula for f(x), namely f(x) = 1
1−x , but note

that while 1
1−x makes sense for all x ∈ R except x = 1, the infinite sum

∑∞
k=0 x

k

only makes sense for −1 < x < +1.

Similarly, we can define the exponential function exp(x) by

exp(x) :=

∞∑
k=0

xk

k!

where this series exists. For what values x ∈ R does exp(x) exist? We know it exists
for x = 1, because we proved earlier that

∑∞
k=0

1
k! exists (we called this sum “e”).

So exp(x) exists for all 0 ≤ x ≤ 1 by the comparison test, Theorem 4.8. It fol-
lows that exp(x) converges absolutely for all x with |x| ≤ 1 and hence exp(x)
exists for these values of x by Theorem 4.18 (“absolute convergence implies con-
vergence”).
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Remark 4.28
One of the Problem Sheet questions shows that exp(x) exists for x = 2. By the
above argument, it therefore exists for all x with |x| ≤ 2.

We can do better, and prove that exp(x) exists for all x ∈ R. It will suffice to prove
this for all x with x ≥ 0 (as absolute convergence implies convergence).

Theorem 4.29
exp(x) :=

∑∞
k=0

xk

k! exists for all x ∈ R.

Proof. As mentioned above, we only need to consider x ≥ 0. For M with 1 ≤M ≤ k
we have

k! = k · (k − 1) · (k − 2) · . . . · (M + 1)︸ ︷︷ ︸
k−M terms

·M . . . 3 · 2 · 1 ≥Mk−M .

In fact, k! ≥Mk−M for all M ∈ N (since if M > k then Mk−M < 1).

Now given x ∈ R with x ≥ 0, pick M ∈ N with M ≥ 2x. Then

xk

k!
≤ xk

Mk−M = MM
( x
M

)k
≤MM

(1

2

)k
.

So
∑∞

k=0
xk

k! converges by the comparison test, Theorem 4.8

This shows that exp is a well-defined function from R to R. Similarly, we can define

sin(x) :=
x

1!
− x3

3!
+
x5

5!
− x7

7!
+ . . .

cos(x) := 1− x2

2!
+
x4

4!
− x6

6!
+ . . .

for all values of x ∈ R for which these sums exist. For what values of x ∈ R are
these defined?

The series for sin(x) converges absolutely for all x ∈ R by the comparison test. To
see this, write the series for sin(x) as

sin(x) = 0 +
x

1!
+ 0x2 − x3

3!
+ 0x4 +

x5

5!
+ 0x6 − x7

7!
+ . . .

and note that every term in the series is less than or equal in absolute value to the
corresponding term in the series for exp(x). But we have just proved that exp(x)
exists for all x. Hence by Theorem 4.18 the series for sin(x) exists for all x ∈ R.
Similarly, the series for cos(x) exists for all x ∈ R.

In general, we have the following result for a power series (that is a series of the
form

∑∞
k=0 akx

k).
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Theorem 4.30 (Radius of convergence)
Given any power series

∑∞
k=0 akx

k (with coefficients ak ∈ R), exactly one of the
following three statements is true:

(i)
∑∞

k=0 akx
k converges absolutely for all x ∈ R.

(ii)
∑∞

k=0 akx
k exists only for x = 0.

(iii) ∃R > 0 (called the radius of convergence) such that:

(a)
∑∞

k=0 akx
k converges absolutely for all x with |x| < R.

(b)
∑∞

k=0 akx
k does not converge for any x with |x| > R.

We cannot say what happens when |x| = R: depending on the value of x,
the series may or may not converge.

Examples 4.31 (i)
∑∞

k=0
xk

k! converges absolutely for all x ∈ R.

(ii)
∑∞

k=0(k!)xk only converges for x = 0.

(iii)
∑∞

k=0 x
k has radius of convergence R = 1.

(iv) More examples are given on the Problem Sheets.

Proof of Theorem 4.30. It is sufficient to prove the following statement

(∗) If X is a real number such that the series converges for x = X, then
the series converges absolutely for all Y ∈ R with |Y | < |X|.

Why is this sufficient? We set

S :=
{
|X| : X ∈ R and

∞∑
k=0

akx
k converges for x = X

}
.

• If S has no upper bound, then given Y ∈ R, we can find X such that |X| ∈ S
and |X| > |Y |. Then (∗) implies we are in case (i).

• If S has an upper bound, then it has a least upper bound R (by the complete-
ness action). If R = 0 then S = {0} and we are in case (ii).

• Finally if R > 0, given Y ∈ R with |Y | < R, there exists X ∈ R with |X| ∈ S
and |X| > |Y |. Then (∗) implies that we are in case (iii).
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It remains to prove (∗): Assume
∑∞

k=0 akX
k converges and |Y | < |X|. Since∑∞

k=0 akX
k converges, the terms akX

k converge to zero and hence there exists
M ∈ R such that |akXk| < M for all k ∈ N (by Example 3.20). Therefore

|akY k| = |ak| · |X|k ·
∣∣∣Y
X

∣∣∣k < M ·
∣∣∣Y
X

∣∣∣k
and as | YX | < 1 the sum

∑∞
k=0|

Y
X |

k exists (Theorem 4.11). Hence by the comparison
test (Theorem 4.8),

∑∞
k=0|akY k| exists. This proves (∗) and hence the theorem.
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5 Continuity

A function from R to R assigns a real number f(x) to each real number x. There
doesn’t have to be a single rule for this assignment. We think of f as a “black box”
into which we input a real number x and we get a real number f(x) as output. We
only insist that if we input the same number on more than one occasion, we get the
same answer. If so, we say we have a “well-defined function”.

Possible examples include simple functions such as f(x) = x, f(x) = 5 (∀x ∈ R) or
f(x) = sin(x2), but also more complicated looking ones, for example

f(x) =

{
0 if x /∈ Q,
1 if x ∈ Q,

or

f(x) =

{
0 if x /∈ Q or if x = 0,

1/q if x ∈ Q and x = p
q in lowest terms, with p > 0.

For the latter examples, it is hard to draw the graphs, as they look quite “wild”.
The goal of this section is to study continuity of functions and some of the properties
of continuous functions.

5.A Definition and first examples

We shall formalize the idea that a function is continuous if one can draw its graph
“without lifting the pen off the paper”.

-

6

-

6

a

continuous not continuous

Having this picture in mind, we can now give a precise definition of continuity at
some point a ∈ R.

Definition 5.1 (Continuous functions)
Suppose f : R→ R is a function and a ∈ R. We say that f is continuous at a if

∀ε > 0 ∃δ > 0 ∀h ∈ R, |h| < δ : |f(a+ h)− f(a)| < ε. (5.1)
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We say that f is continuous if it is continuous at a for all a ∈ R.

-

6

a

f(a)
ε

ε

δ δ

6

6

?

?

--��

Examples 5.2 (i) f(x) = x is continuous at 0.

Winning strategy for the Demon Game. Suppose the Demon picks ε > 0.
We then have to pick δ. Let us simply assume we have done this and
continue with the game. The Demon then picks h with |h| < δ. We win
if |f(0 + h) − f(0)| < ε. But |f(0 + h) − f(0)| = |h − 0| = |h| < δ, which
suggests that we could have simply chosen δ = ε as our winning strategy!
So we can turn this into a formal proof.

Proof. Given ε > 0, let δ = ε. Then for all h ∈ R with |h| < δ, we have

|f(0 + h)− f(0)| = |h− 0| = |h| < δ = ε,

so f is continuous at 0.

(ii) The constant function f(x) = 5 is continuous at all points a ∈ R.

-

6

r

a

5
ε
ε

δ δ

6
6

?
?

- -� �

Proof. Given a ∈ R and ε > 0, let δ be any positive real number, e.g. δ = 1.

72



Convergence and Continuity 2023–2024

Then for all h ∈ R with |h| < δ we have

|f(a+ h)− f(a)| = |5− 5| = 0 < ε,

so f is continuous at a.

(iii) f(x) = 3x is continuous at all points a ∈ R.

Proof. Given a ∈ R and ε > 0, let δ = ε
3 . Then for any h ∈ R with |h| < δ

we have

|f(a+ h)− f(a)| = |3(a+ h)− 3a| = |3h| < 3δ = ε,

so f is continuous at a.

How do we prove that a function is not continuous at some a ∈ R? We have to show
the negation of (5.1), namely

∃ε > 0 ∀δ > 0 ∃h ∈ R, |h| < δ : |f(a+ h)− f(a)| ≥ ε. (5.2)

Example 5.3
Let f(x) be defined by

f(x) =

{
0 if x ≤ 0,

1 if x > 0.

We claim that f(x) is not continuous at 0.

-

6

s
sr1

Proof. We pick ε = 1
2 . Now whatever δ > 0 we are given (by the Demon), we

can pick h ∈ (0, δ), for example pick h = δ
2 . Then

|f(0 + h)− f(0)| = |f(h)− f(0)| = |1− 0| = 1 ≥ 1

2
= ε.

Thus we have shown that the negation of (5.1) is true and hence f is not contin-
uous at 0.
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Recall that our definition (5.1) of “f : R→ R is continuous at a ∈ R” was

∀ε > 0 ∃δ > 0 ∀h ∈ R, |h| < δ : |f(a+ h)− f(a)| < ε.

So the Demon specifies ε > 0 which says how close f(a + h) must be to f(a). We
then reply with δ > 0 (possibly depending on a and on ε) which guarantees that if
|h| < δ then f(a+ h) is indeed ε-close to f(a).

Obviously, this is equivalent to the following statement:

∀ε > 0 ∃δ > 0 ∀x ∈ R, |x− a| < δ : |f(x)− f(a)| < ε. (5.3)

From (5.1), we arrive at (5.3) by replacing h by x− a, and vice versa. The negation
of (5.3) is

∃ε > 0 ∀δ > 0 ∃x ∈ R, |x− a| < δ : |f(x)− f(a)| ≥ ε. (5.4)

While sometimes it is easier to work with (5.1) and (5.2), there are other situations
where it is more convenient to work with the equivalent statements (5.3) and (5.4).

Examples 5.4 (i) Let f(x) be defined by

f(x) =

{
1 if x ∈ Q,
0 if x /∈ Q.

Here is a schematic illustration of how f(x) looks.

-

6

r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r
r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r

1

0

We claim that this function is not continuous anywhere.

Proof. We first show that if a ∈ Q, then f is not continuous at a. We must
show that

∃ε > 0 ∀δ > 0 ∃x ∈ R, |x− a| < δ : |f(x)− f(a)| ≥ ε.

As our a ∈ Q, we have f(a) = 1. We pick ε = 1
2 (in fact any ε ∈ (0, 1]

would do). Now given any δ > 0 there exists an irrational number x in the
interval (a − δ, a + δ) (by Corollary 2.21 “irrational numbers are dense in
R”). For such an x, f(x) = 0 and thus

|f(x)− f(a)| = |0− 1| = 1 ≥ 1

2
= ε.
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Hence f is not continuous at a.

On the other hand, if a /∈ Q, then f(a) = 0. We pick again ε = 1
2 . Given

any δ > 0 (by the Demon), there exists a rational number x in the interval
(a − δ, a + δ) (by Theorem 2.17 “rational numbers are dense in R”). For
such x, f(x) = 1 and hence

|f(x)− f(a)| = |1− 0| = 1 ≥ 1

2
= ε,

so f is not continuous at a.

(ii) Let f(x) be defined by

f(x) =

{
x if x ∈ Q,
0 if x /∈ Q.

We claim that this function is continuous at a = 0 and not continuous at
any other point a ∈ R.

-

6

r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r
rrrrrrrr

rrrrrrrr
rrrrrrrr

rrrrrrrr
rrr

0

Proof. We first show that f is continuous at a = 0. We must show that

∀ε > 0 ∃δ > 0 ∀x ∈ R, |x| < δ : |f(x)| < ε.

(This is just (5.3), where we plugged in a = 0 and f(a) = 0.)

Given any ε > 0 (by the Demon), we choose δ = ε (as this worked both for
the linear function f(x) = x and for the constant function f(x) = 0). Now,
for all x with |x| < δ = ε, f(x) is equal to either x or 0. In either case, we
have |f(x)| < ε. Thus f is continuous at a = 0.

Next, we show that if a ∈ Q, a 6= 0, then f is not continuous at a. We must
show that

∃ε > 0 ∀δ > 0 ∃x ∈ R, |x− a| < δ : |f(x)− f(a)| ≥ ε.
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As a ∈ Q, we have f(a) = a which motivates us to pick ε = |a|
2 > 0 (in fact

any ε ∈ (0, |a|] would do). Now given any δ > 0 there exists an irrational
number x in the interval (a− δ, a+ δ) (by Corollary 2.21). For such an x,
f(x) = 0 and thus

|f(x)− f(a)| = |0− a| = |a| ≥ |a|
2

= ε.

Hence f is not continuous at a.

Similarly, if a /∈ Q, then f(a) = 0. We pick again ε = |a|
2 . Given any δ > 0

(by the Demon), we pick a rational number x such that

• x ∈ (a, a+ δ) if a > 0,

• x ∈ (a− δ, a) if a < 0.

This ensures that |x| > |a|. We can find such an x by Theorem 2.17. As
f(x) = x, we have

|f(x)− f(a)| = |x− 0| = |x| ≥ |a| ≥ |a|
2

= ε,

so f is not continuous at a.

Remark 5.5
It is possible to construct functions f for which the set of points a where f is
continuous is a complicated set. For example, there exists functions that are
continuous at every irrational a ∈ R but not continuous at any rational a ∈ R.
An example (see the Problem Sheet) is:

f(x) =

{
0 if x /∈ Q or if x = 0,

1/q if x ∈ Q and x = p
q in lowest terms, with p > 0,

But let us go back to well-behaved functions.

Example 5.6
f(x) = x2 is continuous at every a ∈ R. To prove this, we have to show that for
every a ∈ R the following statement holds:

∀ε > 0 ∃δ > 0 ∀h ∈ R, |h| < δ : |(a+ h)2 − a2| < ε.

Let us start with an informal calculation: (a+ h)2 − a2 = a2 + 2ah+ h2 − a2 =
2ah + h2 = (2a + h)h. We want |h| to be small enough that |(2a + h)h| < ε.
What conditions do we need to place on |h| so that the following sequence of
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inequalities hold

|(2a+ h)h| ≤ (2|a|+ |h|)|h| < (2|a|+ 1)|h| < ε?

The first inequality always holds: it is the triangle inequality. The middle in-
equality will hold if |h| < 1. The final inequality will hold if |h| < (2|a|+ 1)−1ε.

This leads us to the following formal proof.

Proof. Given any a ∈ R and ε > 0, choose δ = min
{

(2|a|+ 1)−1ε, 1
}

. Then, for
all h with |h| < δ we have

|(a+ h)2 − a2| = |2ah+ h2| ≤ (2|a|+ |h|)|h| < (2|a|+ δ)δ ≤ (2|a|+ 1)δ < ε.

So f is continuous at a.

Remark 5.7
A similar proof works for all polynomial functions. You will see more examples
of this type on the Problem Sheet!

What if the function f is only defined on a subset D ⊆ R, not on the whole
of R?

Examples 5.8

(i) f(x) = 1
x . Here f is a function D → R where D = R \ {0}.

(ii) f(x) =
∑∞

k=0 x
k. Here f : (−1, 1)→ R.

(iii) f(x) =
∑∞

k=0
xk

k . Here f : [−1, 1)→ R.

Definition 5.9
We say that f : D → R is continuous at a ∈ D if

∀ε > 0 ∃δ > 0 ∀x ∈ D, |x− a| < δ : |f(x)− f(a)| < ε. (5.5)

We must specify x ∈ D instead of x ∈ R, as f(x) only makes sense for x ∈ D.

Example 5.10
f(x) =

√
x. Here f is a function f : [0,∞) → R. To prove that this function is

continuous at a = 0, we must show that

∀ε > 0 ∃δ > 0 ∀x ∈ [0,∞), |x| < δ : |
√
x | < ε.
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But this is easy:

Proof. Given ε > 0, we take δ = ε2. Then if x ∈ [0,∞) and x < δ = ε2, we have
|
√
x | < ε as required. So f is continuous at 0.

Remark 5.11
f(x) =

√
x is not differentiable at x = 0, but it is continuous at x = 0.

Example 5.12
One can prove (and we will assume this in this course) that any power series

∞∑
k=0

akx
k

defines a continuous function from D to R, where D is the disc of convergence of
the series, i.e. D = {x ∈ R : |x| < R} where R is the radius of convergence of the
series (see Theorem 4.30). In particular, exp(x), sin(x) and cos(x) are continuous
functions on all of R. Similarly, every polynomial function is continuous at every
point a ∈ R, as a polynomial is a power series with only finitely many non-
vanishing coefficients ak.

5.B Rules for continuous functions

Suppose that f : D1 → R and g : D2 → R are continuous. Let us construct more
continuous functions from them:

• We define cf : D1 → R by (cf)(x) = cf(x), for c ∈ R.

• We define f + g : D1 ∩D2 → R by (f + g)(x) = f(x) + g(x).

• We define f · g : D1 ∩D2 → R by (f · g)(x) = f(x)g(x). (Do not confuse this
product of f and g with the composition f ◦ g.)

• We define f
g : D1 ∩D2 ∩ {x ∈ R : g(x) 6= 0} → R by

(f
g

)
(x) = f(x)

g(x) .

Examples 5.13

(i) h(x) = 1
x is the quotient of the constant function f(x) = 1 by the function

g(x) = x, and it is defined whenever g(x) 6= 0, i.e. on R \ {0}. Is this h
continuous?

(ii) h(x) = sin(x) cos(x)
x2+2

is the quotient of the function f(x) = sin(x) cos(x) by
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the function g(x) = x2 + 2 and it is defined whenever g(x) 6= 0, i.e. on all
of R. Moreover, f(x) is the product of the continuous functions sin(x) and
cos(x) and g(x) is the sum of the continuous function x2 and the constant
function 2. We want to know whether this h is continuous.

Theorem 5.14 (Building continuous functions from other continuous functions)
Suppose f : D1 → R and g : D2 → R are two functions, c ∈ R is a constant and
a ∈ D1 ∩D2. Assume moreover that f and g are continuous at a. Then

(i) cf is continuous at a.

(ii) f + g is continuous at a.

(iii) f · g is continuous at a.

(iv) If g(a) 6= 0, then f
g is continuous at a.

Proof. Exercise (on the Problem Sheet).

Example 5.15
Every polynomial function is continuous. This follows from the previous theorem
and the fact that the identity function f(x) = x and the constant function f(x) =
c (for c ∈ R fixed) are both continuous.

Now let us look at the composition of functions: Suppose f : D1 → R and g : D2 → R
are two functions. Then we can define the composition g ◦ f by

(g ◦ f)(x) = g(f(x))

at all points x ∈ D1 such that f(x) ∈ D2.

Example 5.16
f(x) = 1 − cos(x), so f : R → [0, 2]. g(x) =

√
x, so g : [0,∞) → [0,∞). Then

g ◦ f is a function R→ [0,∞)

(g ◦ f)(x) =
√

1− cos(x).

In fact, g ◦ f is a function R f→ [0, 2]
g→ [0,

√
2] ⊆ [0,∞). Is it continuous?

Theorem 5.17 (Continuity of composition of functions)
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Suppose f : D1 → D2 and g : D2 → R. Moreover, suppose that a ∈ D1 and that
f is continuous at a and g is continuous at f(a). Then (g ◦ f) is continuous at a.

Informally: As f is continuous at a, we know that if x is close to a, then f(x) is
close to f(a). As g is continuous at f(a), we know that if f(x) is close to f(a), then
g(f(x)) is close to g(f(a)). So the difficulty is just to convert the words “is close to”
into a precise statement involving ε and δ.

Proof. We must prove that if we are given any ε > 0, then we can find δ > 0 such
that for all x with |x − a| < δ we have |g(f(x)) − g(f(a))| < ε. We know by the
continuity of g at f(a) that given ε > 0, there exists δ1 > 0 such that for all y ∈ D2

with |y − f(a)| < δ1, we have

|g(y)− g(f(a))| < ε.

We also know, by the continuity of f at a that given ε̃ = δ1, there exists δ > 0 such
that for all x ∈ D1 with |x− a| < δ, we have

|f(x)− f(a)| < ε̃ = δ1.

Thus, given ε > 0, we can choose δ1 and then δ as above. We deduce that for x ∈ D1

with |x− a| < δ, we have |f(x)− f(a)| < δ1 and hence |g(f(x))− g(f(a))| < ε. This
proves that (g ◦ f) is continuous at a.

Example 5.18
f : R→ R, f(x) = cos(x), g : R→ R, g(x) = exp(x).

f and g are continuous at all points a ∈ R (by our assumption that power series
are continuous at all a inside their discs of convergence). Hence by the above
theorem, g◦f is continuous at all a ∈ R, i.e. the function (g◦f)(x) = exp(cos(x))
is continuous everywhere.

5.C Continuous functions and limits of sequences

Suppose f : R→ R is continuous, and (xn)∞n=1 is a convergent sequence. What can
we say about the sequence (f(xn))∞n=1? The kind of question we are interested in is
the following: we know that xn = 1

n converges to 0. Does it follow that the sequence
exp( 1

n) converges to exp(0)?

Theorem 5.19
Let f : D → R be a function which is continuous at a ∈ D. If (xn)∞n=1 is a
sequence in D which converges to a, then the sequence (f(xn))∞n=1 converges to
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f(a).

This theorem can be upgraded to an “if and only if”: see the Problem Sheet.

Proof. We must show that given any ε > 0, there exists N ∈ N such that for all
n > N we have |f(xn)− f(a)| < ε.

Since f is continuous at a, we know that given ε > 0, ∃δ > 0 such that for all x ∈ D
with |x− a| < δ, we have |f(x)− f(a)| < ε.

Since (xn)∞n=1 converges to a, we know that given δ > 0, ∃N ∈ N such that for all
n > N we have |xn − a| < δ.

Combining these two facts, we see that for all n > N we have |xn − a| < δ and
therefore |f(xn)− f(a)| < ε. Hence (f(xn))∞n=1 converges to f(a).

Remark 5.20
The proof of Theorem 5.19 follows the same strategy as that of Theorem 5.17
(“continuity of the composition of continuous functions”). If we think of a con-
vergent sequence (xn)∞n=1 as a function N → R, n 7→ xn and extend this to a
function

N ∪ {∞} → R

by sending ∞ to the limit a of (xn)∞n=1, then we can think of this function as
being “continuous at ∞” (this is not rigorous, but there is a way to make it
rigorous via the concept of a “topological space”). Hence, Theorem 5.19 might
be interpreted as a special case of Theorem 5.17.

Examples 5.21 (i) xn = cos
(
(1 + 1

n)(1 + 1
n2 )
)
. We know that ((1 + 1

n)(1 +
1
n2 ))∞n=1 converges to 1 by Theorem 3.24. Moreover, we know that cos(x)
is continuous at a = 1 (since it is continuous everywhere). Hence Theorem
5.19 tells us that (xn)∞n=1 converges to cos(1).

(ii) We can use Theorem 5.19 to prove that
(

1√
n

)∞
n=1

converges to 0 without

going back to the definition of convergence. To do this, observe that

• 1
n converges to 0

• x
f7→
√
x is continuous at 0.

Hence by Theorem 5.19, the sequence 1√
n

= f( 1
n) converges to f(0) =

√
0 =

0.

(iii) We can use Theorem 5.19 to prove that a function is not continuous. For
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example let

f(x) =

{
0 if x 6= 0,

1 if x = 0.

Now let xn = 1
n so that xn → 0. Then f(xn) = 0 for all n and so f(xn)→ 0.

But f(0) = 1 6= 0, so f cannot be continuous at 0 by Theorem 5.19.

The Examples 5.4 can be tackled similarly.

Continuing the idea from Example (iii) above, we introduce the following:

Definition 5.22
We say that limx→a f(x) exists and is equal to ` ∈ R iff

∀ε > 0 ∃δ > 0 ∀h, 0 < |h| < δ : |f(a+ h)− `| < ε.

It is important that we require |h| 6= 0, because we do not want to consider f(a) in
the definition!

One can show (see the Problem Sheet) that limx→a f(x) = ` (according to the above
definition) if and only if for every sequence (xn)∞n=1 which satisfies xn 6= a for all n
as well as xn → a for n→∞, we get f(xn)→ ` as n→∞.

An equivalent definition to our earlier definition of “f is continuous at a” is to say
that f is continuous at a if and only if limx→a f(x) exists and is equal to f(a). With
this definition, it is obvious that the function

f(x) =

{
0 if x 6= 0,

1 if x = 0,

is not continuous at x = 0, since limx→0 f(x) = 0, but f(0) = 1.

5.D The Intermediate Value Theorem

Theorem 5.23 (Intermediate Value Theorem (IVT))
If f : [a, b] → R is continuous and f(a) ≤ 0 and f(b) ≥ 0 then ∃c ∈ [a, b] such
that f(c) = 0.

As a first step to proving this theorem, we prove the following lemma.

Lemma 5.24
Suppose f : [a, b] → R is continuous and c ∈ [a, b] such that f(c) > 0. Then
∃δ > 0, such that ∀x ∈ (c− δ, c+ δ) ∩ [a, b] : f(x) > 0.
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Proof. Since f is continuous at c, we know that ∀ε > 0 ∃δ > 0 such that ∀x ∈
(c− δ, c+ δ) ∩ [a, b] we have |f(x)− f(c)| < ε.

So picking ε = f(c)
2 , we know that

∃δ > 0 ∀x ∈ (c− δ, c+ δ) ∩ [a, b] : |f(x)− f(c)| < f(c)

2

and therefore

∃δ > 0 ∀x ∈ (c− δ, c+ δ) ∩ [a, b] :
f(c)

2
< f(x) <

3f(c)

2
,

so in particular f(x) > 0.

Remark 5.25
The statement of the lemma includes the possibility that c = a or c = b. There
is an obvious analogous result for f(c) < 0.

Proof of Theorem 5.23. Let A = {x ∈ [a, b] : f(x) ≤ 0}. This set is non-empty,
since a ∈ A. It is also bounded above (by b). So by the Completeness Axiom, A has
a least upper bound, say c ∈ [a, b]. We will prove that f(c) = 0.

If f(c) < 0 then c 6= b and so c < b. By Lemma 5.24 ∃δ > 0 such that for all
x ∈ (c− δ, c+ δ) ∩ [a, b] we have f(x) < 0.

Choose x ∈ (c, c+ δ) ∩ [a, b]. This exists since c < b. Then f(x) < 0 and so x ∈ A.
On the other hand x > c. This contradicts the fact that c is an upper bound for A.

If f(c) > 0 then c 6= a and so c > a. By Lemma 5.24 ∃δ > 0 such that for all
x ∈ (c− δ, c+ δ) ∩ [a, b] we have f(x) > 0.

Choose x ∈ (c− δ, c)∩ [a, b]. This exists since c > a. Then f(x) > 0 and we see that
x is an upper bound for A. But x < c which contradicts the fact that c is the least
upper bound for A.

Hence the only possibility is f(c) = 0.

Remark 5.26 (i) We have used exactly the same steps in this proof as we
used earlier in the course to prove that there exists a number “

√
2” in R

(Theorem 2.19). In fact, if we work through the proof of the IVT with the
function f(x) = x2 − 2, we get exactly the proof of Theorem 2.19.

(ii) We used the Completeness Axiom to prove the IVT and in fact this is
necessary: the IVT is not true if we replace R by Q in the domain of f .
For example f(x) = x2 − 2 has no value c ∈ Q such that f(c) = 0.
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(iii) The IVT is of course also true for functions that have f(a) ≥ 0 and f(b) ≤ 0
(just apply Theorem 5.23 to the function −f).

Example 5.27
Let f(x) = x5+x+1. There is no formula for the solutions to a general equation of
degree 5. There are formulas for the solutions of polynomial equations of degrees
2, 3 and 4, but is was proved by Abel and Galois in the early 19th century that
there cannot be a formula in terms of square roots, cube roots, etc. for a general
polynomial equation of degree 5 and above (the Level 7 module Further Topics
in Algebra concludes with a proof of this fact).

But we can use the IVT to prove that f(x) has at least one real root! We have

• f(10) = 105 + 10 + 1 > 0,

• f(−10) = (−10)5 − 10 + 1 < 0.

Since f is continuous on [−10, 10] (being a polynomial), we can deduce that
∃c ∈ [−10, 10] such that f(c) = 0.

We can generalise this example and prove that every polynomial of odd degree has
a real root.

Corollary 5.28
Suppose p(x) is the polynomial

p(x) = xn + an−1x
n−1 + . . .+ a2x

2 + a1x+ a0

where n is odd and aj ∈ R for all j. Then p(x) = 0 has at least one solution
x ∈ R.

Proof. Let M = max{1, |a0|+ |a1|+ . . .+ |an−1|}. Then we have

p(M) = Mn + an−1M
n−1 + . . .+ a1M + a0

≥Mn − |an−1|Mn−1 − . . .− |a1|M − |a0|
≥Mn − (|an−1|+ . . .+ |a0|)Mn−1

≥Mn−1(M − (|an−1|+ . . .+ |a0|))
≥ 0.

Here, we used M ≥ 1 for the third line and M ≥ |a0| + |a1| + . . . + |an−1| for the
last line. Similarly, we obtain p(−M) ≤ 0.

Now, p is continuous on R since p is a polynomial. Hence by the IVT, ∃c ∈ [−M,M ]
with p(c) = 0. This proves the corollary.
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Remark 5.29
A polynomial of even degree may not have a real root. For example p(x) = x2+1
has no real roots. However, every polynomial has a complex root! This result is
called the Fundamental Theorem of Algebra.

Another application of the IVT is the following.

Corollary 5.30 (A fixed point theorem)
Let f : [0, 1] → [0, 1] be a continuous function. Then f has a fixed point, i.e.
there exists c ∈ [0, 1] such that f(c) = c.

Proof. Let g be the function defined by g(x) = f(x)−x. Then g is continuous since
it is a sum of continuous functions. Moreover

• g(0) = f(0)− 0 ≥ 0 (since f(0) ≥ 0),

• g(1) = f(1)− 1 ≤ 0 (since f(1) ≤ 1).

Hence, by the IVT ∃c ∈ [0, 1] such that g(c) = 0. But this means f(c)− c = 0, i.e.
f(c) = c.

Remark 5.31 (i) We cannot replace [0, 1] by the open interval (0, 1) in Corol-
lary 5.30. There exist continuous maps (0, 1)→ (0, 1) which do not have a
fixed point (see Problem Sheet 6).

(ii) Corollary 5.30 can be generalized to every dimension n, where it says: let
Dn denote the unit disc in Rn, i.e.

Dn := {(x1, x2, . . . , xn) : x21 + x22 + . . .+ x2n ≤ 1} ⊆ Rn.

Then every continuous map f : Dn → Dn has at least one fixed point. This
is called the Brouwer Fixed Point Theorem (proved by Brouwer about 100
years ago). The proof uses Algebraic Topology.

We end this section with a more general version of the Intermediate Value Theorem.

Corollary 5.32 (More general form of IVT)
Suppose f : [a, b] → R is continuous and y is a real number between f(a) and
f(b). Then ∃c ∈ [a, b] such that f(c) = y.

Proof. Suppose without loss of generality that f(a) < f(b). We are given a value y
with f(a) < y < f(b). Define g by g(x) = f(x)− y.
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• g is continuous on [a, b] as the sum of two continuous functions,

• g(a) = f(a)− y < 0 (since f(a) < y),

• g(b) = f(b)− y > 0 (since y < f(b)).

So by the IVT, ∃c ∈ [a, b] with g(c) = 0, i.e. f(c) = y.

5.E Continuous functions on closed intervals and the “boundedness
principle”

Our aim in this section is to prove the following results for a continuous function f
on a closed interval [a, b] ⊆ R.

(i) f is bounded on [a, b], so by the Completeness Axiom the set f([a, b]) = {f(x) :
x ∈ [a, b]} has a least upper bound M and a greatest lower bound m.

(ii) M and m are attained by f on [a, b], i.e. ∃c, d ∈ [a, b] with f(c) = M and
f(d) = m (that is: M and m are maximum and minimum of f([a, b])).

(iii) f([a, b]) is the closed interval [m,M ]. (This is the easy step: it follows directly
from the general IVT, Corollary 5.32.)

To prove (i), we first prove the following consequence of the Bolzano–Weierstrass
theorem (Theorem 3.42), which stated that every bounded sequence in R has a
convergent subsequence.

Corollary 5.33 (Bolzano–Weierstrass for a closed interval [a, b] ⊆ R)
If (xn)∞n=1 is a sequence in [a, b] then (xn)∞n=1 has a subsequence (xrj )

∞
j=1 which

converges to a point in [a, b].

Proof. A sequence in [a, b] is bounded (it is bounded above by b and bounded below
by a). So by Theorem 3.42 the sequence (xn)∞n=1 has a subsequence (xrj )

∞
j=1 which

converges to a point x ∈ R.

But for all j we know that xrj ≥ a, so comparing (xrj )
∞
j=1 with the constant sequence

(a)∞j=1, we see that limj→∞ xrj ≥ a by Lemma 3.27. Similarly, xrj ≤ b for all j and
hence limj→∞ xrj ≤ b. Hence, x = limj→∞ xrj ∈ [a, b].

Remark 5.34
We do need [a, b] to be closed. For example the sequence xn = 1

n has all its
elements in (0, 1) but its limit is x = 0 /∈ (0, 1).
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Examples 5.35 (i) xn = (−1)n(1 − 1
n). This is the sequence 0, 12 ,−

2
3 ,

3
4 ,−

4
5 ,

5
6 ,−

6
7 , . . .. Thus xn ∈ [−1,+1] for all n and hence it must have a subse-

quence which converges to a limit in [−1, 1].

Indeed, x1, x3, x5, x7, . . . is a subsequence which converges to −1. Moreover,
x2, x4, x6, x8, . . . is a subsequence which converges to +1.

(ii) Write down all the rational numbers in [0, 1] ∈ R in order of increasing
denominator:

0, 1,
1

2
,
1

3
,
2

3
,
1

4
,
3

4
,
1

5
,
2

5
,
3

5
,
4

5
,
1

6
,
5

6
,
1

7
, . . .

This sequence must have a subsequence which converges with limit in [0, 1].
Indeed, the subsequence given by the elements 1

2 ,
1
3 ,

1
4 ,

1
5 , . . . converges to

zero while the subsequence 1
2 ,

2
3 ,

3
4 ,

4
5 , . . . converges to 1. One can show that

in fact, for every x ∈ [0, 1] there exists a subsequence of the above sequence
which converges to x.

Definition 5.36
Suppose D ⊆ R and f : D → R is continuous. We say that

• f is bounded above on D if {f(x) : x ∈ D} is bounded above,

• f is bounded below on D if {f(x) : x ∈ D} is bounded below,

• f is bounded on D if {f(x) : x ∈ D} is bounded.

Examples 5.37 (i) f : R→ R given by f(x) = sin(x) is bounded above by +1
and below by −1.

(ii) f : R → R given by f(x) = x2 is bounded below by 0 but not bounded
above.

(iii) f : (0, 1) → R given by f(x) = 1
x is bounded below by 1 but not bounded

above.

Theorem 5.38 (Boundedness Principle I)
If f : [a, b]→ R is continuous, then f is bounded on [a, b].

Remark 5.39
As Example (iii) above shows, we need [a, b] rather than (a, b).
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Proof. We assume for a contradiction that f : [a, b] → R is continuous but not
bounded above. As f is not bounded above, we can choose x1 ∈ [a, b] with f(x1) ≥ 1
and x2 ∈ [a, b] with f(x2) ≥ 2, etc. That is, we have a sequence (xn)∞n=1 in [a, b]
with f(xn) ≥ n.

By Corollary 5.33, this sequence (xn)∞n=1 has a subsequence (xrj )
∞
j=1 which converges

to some x ∈ [a, b]. By Theorem 5.19, the sequence (f(xrj ))
∞
j=1 converges to f(x)

since f is continuous at x. But on the other hand, by construction, (f(xrj ))
∞
j=1

tends to infinity. Contradiction.

This shows that f is bounded above. The fact that f is bounded below follows
analogously.

Theorem 5.40 (Boundedness Principle II)
If f : [a, b]→ R is continuous, then f attains a maximum and a minimum on [a, b],
i.e. ∃c ∈ [a, b] s.t. f(x) ≤ f(c) for all x ∈ [a, b] and ∃d ∈ [a, b] s.t. f(x) ≥ f(d)
for all x ∈ [a, b].

Remark 5.41
This is only true in general for a closed interval [a, b]. For example the function
f(x) = 1

x on the open interval (0, 1) has a greatest lower bound which is 1, but
the value 1 is not attained inside the open interval (0, 1), so the function has no
minimum on this open interval.

Proof. Let M = sup{f(x) : x ∈ [a, b]}. (This exists according to Theorem 5.38 and
the Completeness Axiom.) Suppose towards a contradiction that M is not attained
by f at any x ∈ [a, b].

Now define g : [a, b] → R by g(x) = 1
M−f(x) . This is well-defined since we assume

f(x) 6= M for any x ∈ [a, b]. Since f is continuous, so is g (since it is the quotient of
continuous functions and the denominator is not zero). Hence by Theorem 5.38 also
g : [a, b]→ R is bounded. In particular, there is some M ′ > 0 such that g(x) ≤ M ′

for all x ∈ [a, b].

But this means that

1

M − f(x)
≤M ′ ∀x ∈ [a, b]

⇒ 1

M ′
≤M − f(x) ∀x ∈ [a, b]

⇒f(x) ≤M − 1

M ′
∀x ∈ [a, b].
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In particular, M − 1
M ′ < M is an upper bound for f , contradicting the fact that M

was chosen to be the least upper bound.

Hence M must be attained by f for some c ∈ [a, b] (i.e. f(c) = M). Applying
exactly the same reasoning to the function −f , we see that −f attains a maximum
on [a, b] and hence f attains a minimum at some point d ∈ [a, b].

Theorem 5.42 (The Interval Theorem)
If f : [a, b]→ R is continuous, then {f(x) : x ∈ [a, b]} is a closed interval.

Proof. Let m = inf{f(x) : x ∈ [a, b]} and M = sup{f(x) : x ∈ [a, b]}. By the
Boundedness Principle I (Theorem 5.38), we know that M and m exist and by
the Boundedness Principle II (Theorem 5.40) we know that they are attained, i.e.
∃c, d ∈ [a, b] with f(c) = m and f(d) = M .

Without loss of generality, assume c < d. f is continuous on [c, d] (as [c, d] ⊆ [a, b]).
So, given any y ∈ [m,M ] = [f(c), f(d)], by the Intermediate Value Theorem (in the
general form of Corollary 5.32), there exists some x ∈ [a, b] with f(x) = y. Hence
{f(x) : x ∈ [a, b]} = [m,M ].

Where to from here?

The Semester B module MTH5105: Differential and Integral Analysis takes these
ideas further, developing the modern edifice of calculus on rigorous foundations.
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