PROBLEM SET 3 FOR MTH 6151

1. Find the general solution to the pde

$$
x^{2} U_{x}+y^{2} U_{y}=(x+y) U .
$$

2. Use the method of characteristics to solve the problem

$$
\begin{aligned}
& y U_{x}+x U_{y}=0 \\
& U(0, y)=e^{-y^{2}}
\end{aligned}
$$

3. Use the method of characteristics to solve the problem

$$
\begin{aligned}
& U_{x}+U_{y}+U=e^{x+2 y} \\
& U(x, 0)=0
\end{aligned}
$$

4. Solve the problem

$$
\begin{aligned}
& N_{x}+N_{t}=-\mu N, \\
& N(0, t)=e^{-t}
\end{aligned}
$$

where $\mu>0$ is a positive constant.
5. In class we saw that the characteristic curves of the equation

$$
U_{x}+y U_{y}=0
$$

are given by the equation

$$
y(x)=C e^{x}, \quad C \in \mathbb{R}
$$

Show that the above family of curves fills the whole plane \mathbb{R}^{2}. HINT: this means that for a given point $\left(x_{\star}, y_{\star}\right)$, one can always find one and only one characteristic curve passing through the point.
6. Find the general solutions to the PDE

$$
U_{x}-U_{t}=\frac{1}{U^{2}}
$$

7. Solve the initial value problem

$$
\left\{\begin{array}{l}
U_{x}+2 U_{t}=e^{-U}, t \geq 0 \\
U(x, 0)=1
\end{array}\right.
$$

8. Classify, according to type (hyperbolic, elliptic, parabolic) the equations
(i) $U_{x x}+2 U_{x y}+U_{y y}-U_{x}+U=0$.
(ii) $2 U_{x y}+U_{y}+U_{x}=0$.
(iii) $U_{x x}-U_{x y}-2 U_{y y}=0$.
(iv) $2 U_{x x}+4 U_{x y}+3 U_{y y}-5 U=0$.
9. Transform the following equations to a canonical form (i.e. without cross-derivatives):
(i) $4 U_{x x}+12 U_{x y}+9 U_{y y}=0$.
(ii) $2 U_{x x}-4 U_{x y}-6 U_{y y}+U_{x}=0$.
(iii) $U_{x x}+2 U_{x y}+17 U_{y y}=0$.

To which type do each of the equations above belongs to?

