PROBLEM SET 2 FOR MTH 6151

1. Find the general solutions (by any method) to:
(i) $U_{x}-2 U_{t}=0$.
(ii) $\pi U_{x}+U_{y}=0$.

Here, and in the next question $\pi=3.1415 \ldots$.
2. Find the solutions (by any method) to:
(i) $U_{x}-2 U_{t}=0, U(0, t)=\cos t$. Explain what type of problem is this (initial/boundary value)?
(ii) $\pi U_{x}+U_{y}=0, U(x, 0)=x^{2}$. Explain what type of problem is this (initial/boundary value)?
3. Consider the $\operatorname{PDE} U_{x}+U_{t}=1+e^{t}$.
(i) Verify that $x+e^{t}$ is a solution to this PDE.
(ii) Find the general solutions to this inhomogeneous PDE. (Hint: Use the principle of superposition)
4. Use the change of coordinates

$$
\begin{aligned}
& \tilde{x}(x, y)=a x+b y, \\
& \tilde{y}(x, y)=b x-a y .
\end{aligned}
$$

seen in the lectures to solve the constant coefficients pde

$$
a U_{x}+b U_{y}+c U=0
$$

5. Use the method of change of coordinates to solve the equation

$$
U_{x}+2 U_{y}+(2 x-y) U=2 x^{2}+3 x y-2 y^{2} .
$$

Hint: look at Problem 4 to figure out the right change of coordinates.
6. Use the method of change of coordinates to solve the equation

$$
U_{x}+U_{y}+U=e^{x+2 y}
$$

Hint: look at Problem 4 to figure out the right change of coordinates.
7. Solve the initial value problem

$$
\left\{\begin{array}{l}
U_{x}-U_{t}-U=0 \\
U(x, 0)=2
\end{array}\right.
$$

8. Use the method of characteristics to find the general solutions for the pde

$$
U_{x}+U_{y}=1
$$

9. Use the method of characteristics to solve the boundary value problem

$$
\begin{aligned}
& x U_{t}-t U_{x}=1 \\
& U(0, t)=0
\end{aligned}
$$

