PROBLEM SET 1 FOR MTH 6151

1. Are the following partial differential equations (pde's) linear or nonlinear? Determine the order of the pde's as well.
(1) Transport equation $U_{x}+y U_{y}=0$
(2) Shock wave $U_{x}+U U_{y}=0$
(3) Laplace's equation $U_{x x}+U_{y y}=0$
(4) Minimal surface equation $\left(1+U_{y}^{2}\right) U_{x x}+\left(1+U_{y}^{2}\right) U_{y y}-2 U_{x} U_{y} U_{x y}=0$
(5) Mechanical wave $U_{x x}+U_{t t}=\sin U$
(6) Vibrating bar $U_{t t}+U_{x x x x}=0$
(7) Mechanical wave $U_{x x}+U_{t t}=\sin U$
2. Which of the following operators are linear?
(1) $\mathcal{L} U=U_{x}+x U_{y}$
(2) $\mathcal{L} U=U_{x}+U_{y}^{2}$
(3) $\mathcal{L} U=\sqrt{1+x^{2}}(\cos y) U_{x}+U_{x y x}-(\arctan (x / y)) U$
3. For each equation, determine whether it is nonlinear, linear inhomogeneous, or linear homogeneous.
(1) $U_{t}+U_{x x}+1=0$
(2) $U_{t}-U_{x x}+x U=0$
(3) $U_{x}+e^{y} U_{y}=0$
(4) $U_{x}\left(1+U_{x}^{2}\right)^{-1 / 2}+U_{y}\left(1+U_{y}^{2}\right)^{-1 / 2}=0$
4. Show that the difference $V \equiv U_{1}-U_{2}$ of two solutions U_{1} and U_{2} to an inhomogeneous linear pde $\mathcal{L} U=g$ (having the same g in both cases) gives a solution to the homogeneous pde $\mathcal{L} V=0$.
5. Verify that $U(x, y)=f(x) g(y)$ is a solution of the pde

$$
U U_{x y}=U_{x} U_{y}
$$

for any differentiable functions f and g, of one variable.
6. Suppose $f(x)$ is differentiable and $c \neq 0$. Show $U(x, t)=f(x+c t)$ solves the equation

$$
U_{t}-c U_{x}=0 .
$$

7. Show that $U(x, t)=\operatorname{sech}^{2}(x-t)$ solves the equation

$$
4 U_{t}+U_{x x x}+12 U U_{x}=0
$$

Hint:

$$
\frac{d}{d z} \operatorname{sech} z=-\tanh z \operatorname{sech} z, \quad \frac{d}{d z} \tanh z=1-\tanh ^{2} z
$$

8. Check that $U(x, t)=4 \arctan \left[e^{m(x-v t) / a}\right]$ is a solution of the equation

$$
U_{x x}+U_{t t}=m^{2} \sin U
$$

for $a^{2}=1+v^{2}$.

