
MTH786, Semester A, 2023/2024 
Solutions of coursework 2 N. Perra

Problem 1. In the lecture we discussed different types of error measures. In this task
you are asked to compare the stability/robustness of both measures to an outlier. The
data samples given are

(
x(1), y(1)

)
= (−2, 1),

(
x(2), y(2)

)
= (−1, 2),

(
x(3), y(3)

)
= (0, 3),(

x(4), y(4)
)
= (1, 4).

1. Compute the MSE for the 1-parameter model by hand:

MSE(w(0)) =
1

2s

s∑
i=1

|y(i) − w(0)|2,

for w(0) ∈ {1, 2, 3, 4, 5, 6, 7}. Between the above values find w(0) that minimises the
MSE. A new data sample

(
x(5), y(5)

)
= (2, 20) is added. Evaluate new error measure

and corresponding minimiser.

You may find it useful to fill in the missing entries of the following table:

w(0) = 1 w(0) = 2 w(0) = 3 w(0) = 4 w(0) = 5 w(0) = 6 w(0) = 7

y(1) = 1
y(2) = 2
y(3) = 3
y(4) = 4

MSE(w) · 2s
y(5) = 20

MSE(w) · 2s
Some help: 192 = 361, 182 = 324, 172 = 289, 162 = 256, 152 = 225, 142 = 196, 132 = 169.

2. Repeat the same exercise for what is known as the Mean Absolute Error (MAE),
i.e.

MAE(w(0)) =
1

s

s∑
i=1

|y(i) − w(0)| .

What do you observe, in particular with regards to the outlier y(5)?

Solutions:

1. � Filling the missing entries for the one-parameter MSE yields the following

table:

w(0) = 1 w(0) = 2 w(0) = 3 w(0) = 4 w(0) = 5 w(0) = 6 w(0) = 7

y(1) = 1 0 1 4 9 16 25 36

y(2) = 2 1 0 1 4 9 16 25

y(3) = 3 4 1 0 1 4 9 16

y(4) = 4 9 4 1 0 1 4 9

MSE(w) · 2s 14 6 6 14 30 54 86

Minimal value of the MSE is achieved at w(0) = 2 and w(0) = 3.
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� After another data sample is added one gets an updated table as follows

w(0) = 1 w(0) = 2 w(0) = 3 w(0) = 4 w(0) = 5 w(0) = 6 w(0) = 7

y(1) = 1 0 1 4 9 16 25 36

y(2) = 2 1 0 1 4 9 16 25

y(3) = 3 4 1 0 1 4 9 16

y(4) = 4 9 4 1 0 1 4 9

y(5) = 20 361 324 289 256 225 196 169

MSE(w) · 2s 375 330 295 270 255 250 255

Minimal value of the MSE is now achieved at w(0) = 6.

2. � Filling the missing entries for the one-parameter MAE yields the following

table:

w(0) = 1 w(0) = 2 w(0) = 3 w(0) = 4 w(0) = 5 w(0) = 6 w(0) = 7

y(1) = 1 0 1 2 3 4 5 6

y(2) = 2 1 0 1 2 3 4 5

y(3) = 3 2 1 0 1 2 3 4

y(4) = 4 3 2 1 0 1 2 3

MAE(w) · s 6 4 4 6 10 14 18

Minimal value of the MAE is achieved at w(0) = 2 and w(0) = 3.

� After another data sample is added one gets an updated table as follows

w(0) = 1 w(0) = 2 w(0) = 3 w(0) = 4 w(0) = 5 w(0) = 6 w(0) = 7

y(1) = 1 0 1 2 3 4 5 6

y(2) = 2 1 0 1 2 3 4 5

y(3) = 3 2 1 0 1 2 3 4

y(4) = 4 3 2 1 0 1 2 3

y(5) = 20 19 18 17 16 15 14 13

MAE(w) · s 25 22 21 22 25 28 31

Minimal value of the MAE is now achieved at w(0) = 3. Compared to

the MSE, the additional outlier does not affect the location of the

minimum dramatically.

Problem 2. Assume we are given s i.i.d. samples x1, . . . , xs, and we know that they are
drawn from a normal distribution with mean µ and variance σ2. We do not know these
two parameters and want to estimate them from the data using the maximum likelihood
principle.

1. Write down the likelihood for this data, i.e., the joint probability distribution
function ρ(x1, . . . , xs |µ, σ2), where the notation reminds us that this PDF depends
on the two parameters µ and σ2.

2. Use the maximum likelihood principle to estimate the parameter µ. More precisely,
compute the gradient of the negative log-likelihood with respect to µ, set it to zero
and solve for µ. This gives us an estimator µ̂ of µ that depends on the data.

3. Use the maximum likelihood principle to estimate the parameter σ2. Proceed in the
same manner as in section 2, but this time with the parameter σ2 instead of µ.

4. Verify that −∇ log (ρ(w)) = 0 automatically implies ∇ρ(w) = 0, regardless of the
choice of probability density function ρ.

Solutions:



1. The likelihood is given by

ρ(x1, . . . , xs |µ, σ2) =
s∏

n=1

ρ(xn |µ, σ2)

=
s∏

n=1

1√
2πσ2

exp

(
−(xn − µ)2

2σ2

)

=

(
1√
2πσ2

)s

exp

−

s∑
n=1

(xn − µ)2

2σ2

 .

2. Based on the solution of the previous exercise, the negative log-likelihood

is given by

− log
(
ρ(x1, . . . , xs |µ, σ2)

)
= − log

( 1√
2πσ2

)s

exp

−

s∑
n=1

(xn − µ)2

2σ2




=
s

2
log(2πσ2) +

1

2σ2

s∑
n=1

(xn − µ)2

=
s

2
log(2π) +

s

2
log(σ2) +

1

2σ2

s∑
n=1

(xn − µ)2 . (1)

The partial derivative of (1) with respect to µ therefore is

−∂ log (ρ(x1, . . . , xs |µ, σ2))

∂µ
=

1

2σ2

∂

(
s∑

n=1

(x2
n − 2xnµ+ µ2)

)
∂µ

=
1

2σ2

s∑
n=1

(−2xn + 2µ)

=
1

σ2

s∑
n=1

(−xn + µ) .

Setting this expression to zero, we obtain µ̂ = 1
s

s∑
n=1

xn.

3. The derivative of (1) with respect to σ2 is

−∂ log (ρ(x1, . . . , xs |µ, σ2))

∂σ2
=

s

2

∂ log(σ2)

∂σ2
+

∂ 1
σ2

∂σ2

1

2

s∑
n=1

(xn − µ)2

=
s

2

1

σ2
− 1

σ4

1

2

s∑
n=1

(xn − µ)2 .

Setting this expression to zero and replacing the unknown quantity µ by



the estimate µ̂, we obtain σ̂2 = 1
s

∑s
n=1(xn − µ̂)2.

4. From the chain rule we observe −∇ log(ρ(w)) = − 1
ρ(w)

∇ρ(w) = −∇ρ(w)
ρ(w)

, or

∇ρ(w) = ρ(w)∇ log(ρ(w)) .

Hence, if ∇ log(ρ(w)) = 0 is satisfied, we automatically observe ∇ρ(w) =
0.

Problem 3. In the lecture we have seen that the the general MSE cost function for the
linear regression is of the form

MSE(W) =
1

2s
∥XW −Y∥2 ,

where

X =


1 x

(1)
1 x

(1)
2 . . . x

(1)
d

1 x
(2)
1 x

(2)
2 . . . x

(2)
d

...
...

. . .
...

...

1 x
(s)
1 x

(s)
2 . . . x

(s)
d

 , W =


w

(0)
1 w

(0)
2 w

(0)
3 . . . w

(0)
n

w
(1)
1 w

(1)
2 w

(1)
3 . . . w

(1)
n

...
...

. . .
...

...

w
(d)
1 w

(d)
2 w

(d)
3 . . . w

(d)
n

 ,

Y =


y
(1)
1 y

(1)
2 . . . y

(1)
n

y
(2)
1 y

(2)
2 . . . y

(2)
n

...
...

. . .
...

y
(s)
1 y

(s)
2 . . . y

(s)
n

 ,

and the norm ∥·∥ is a Frobenius norm defined by

∥M∥2 =
∑
i,j

m2
i,j.

Prove that the gradient of MSE is given by

∇MSE(w) =
1

s
X⊤ (XW −Y) .

Solutions: By the definition of Frobenius norm and MSE one has

MSE (W) =
1

2s

s∑
i=1

n∑
j=1

(XW −Y)2i,j .

Using the definition of a matrix product one can write the above as follows

MSE (W) =
1

2s

s∑
i=1

n∑
j=1

(
d+1∑
k=1

Xi,kWk,j −Yi,j

)2

.

Finally, using the definition of matrices X,Y,W one can write

MSE (W) =
1

2s

s∑
i=1

n∑
j=1

(
d+1∑
k=1

x
(i)
k w

(k)
j − y

(i)
j

)2

.



The gradient of MSE is a vector of partial derivatives of the form ∂
∂w(p) q

W.

These derivatives can be evaluated by using the chain and the sum rules as

follows

∂

∂w
(p)
q

MSE (W) =
1

2s

s∑
i=1

n∑
j=1

∂

∂w
(p)
q

(
d+1∑
k=1

x
(i)
k w

(k)
j − y

(i)
j

)2

=
1

s

s∑
i=1

n∑
j=1

(
d+1∑
k=1

x
(i)
k w

(k)
j − y

(i)
j

)
∂

∂w
(p)
q

(
d+1∑
k=1

x
(i)
k w

(k)
j − y

(i)
j

)

=
s∑

i=1

n∑
j=1

(
d+1∑
k=1

x
(i)
k w

(k)
j − y

(i)
j

)(
d+1∑
k=1

x
(i)
k

∂

∂w
(p)
q

w
(k)
j

)
.

The derivative ∂

∂w
(p)
q

w
(k)
j is equal to either 0 or 1. And it is equal to 1 if

and only if p = k, j = q. Thus,

∂

∂w
(p)
q

MSE (W) =
1

s

s∑
i=1

(
d+1∑
k=1

x
(i)
k w(k)

q − y(i)q

)
x(i)
p

=
1

s

(
s∑

i=1

d+1∑
k=1

x(i)
p x

(i)
k w(k)

q −
s∑

i=1

x(i)
p y(i)q

)

=
1

s

(
s∑

i=1

d+1∑
k=1

Xi,pXi,kWk,q −
s∑

i=1

Xi,pYi,q

)

=
1

s

(
s∑

i=1

d+1∑
k=1

X⊤
p,iXi,kWk,q −

s∑
i=1

X⊤
p,iYi,q

)
=

1

s

(
X⊤XW −X⊤Y

)
p,q

.

The gradient ∇MSE (W∗) is a vector of all partial derivatives, but if written

in a matrix form this can be represented as

∇MSE (W∗) =
1

s

(
X⊤XW −X⊤Y

)
.

Problem 4. Compute the solution of the polynomial regression problem

ŵ = arg min
w∈Rd+1

{
1

2s

s∑
i=1

∣∣⟨ϕ(x(i)),w⟩ − y(i)
∣∣2} (2)

by hand, for the data samples (x(1), y(1)) = (0, 0), (x(2), y(2)) = (1/4, 1), (x(3), y(3)) =
(1/2, 0), (x(4), y(4)) = (3/4,−1) and (x(5), y(5)) = (1, 0) and choices

1. d = 1,

2. d = 2,

3. d = 3.

Solutions: From the lecture notes we know that the solution of (2) can be

computed by solving the normal equations

Φ(X)⊤Φ(X)ŵ = Φ(X)⊤Y ,



for

Φ(X) =


1 x(1)

(
x(1)
)2 · · ·

(
x(1)
)d

1 x(2)
(
x(2)
)2 · · ·

(
x(2)
)d

1 x(3)
(
x(3)
)2 · · ·

(
x(3)
)d

1 x(4)
(
x(4)
)2 · · ·

(
x(4)
)d

1 x(5)
(
x(5)
)2 · · ·

(
x(5)
)d

 Y =


y(1)

y(2)

y(3)

y(4)

y(5)

 .

We further compute

(
Φ(X)⊤Φ(X)

)
jk

=
s∑

i=1

(
x(i)
)j+k−2

and
(
Φ(X)⊤Y

)
j
=

s∑
i=1

(
x(i)
)j−1

y(i) ,

for j, k ∈ {1, . . . , d+1} and i ∈ {1, . . . , s}. Hence, for the given values {(xi, yi)}5i=1

we can compute ŵ for d = 1, d = 2 and d = 3 via

(
5 5

2
5
2

15
8

)
ŵd=1 =

(
0
−1

2

)
,

 5 5
2

15
8

5
2

15
8

25
16

15
8

25
16

177
128

 ŵd=2 =

 0
−1

2

−1
2

 ,

and 
5 5

2
15
8

25
16

5
2

15
8

25
16

177
128

15
8

25
16

177
128

325
256

25
16

177
128

325
256

2445
2048

 ŵd=3 =


0
−1

2

−1
2

−13
32

 .

with solutions

ŵd=1 =
1

5

(
2
−4

)
ŵd=2 =

1

5

 2
−4
0

 and ŵd=3 =
1

3


0
32
−96
64

 .


