
MTH786, Semester A, 2023/24 
Coursework 2 N. Perra

Problem 1. In the lecture we discussed different types of error measures. In this task
you are asked to compare the stability/robustness of both measures to an outlier. The
data samples given are

(
x(1), y(1)

)
= (−2, 1),

(
x(2), y(2)

)
= (−1, 2),

(
x(3), y(3)

)
= (0, 3),(

x(4), y(4)
)
= (1, 4).

1. Compute the MSE for the 1-parameter model by hand:

MSE(w(0)) =
1

2s

s∑
i=1

|y(i) − w(0)|2,

for w(0) ∈ {1, 2, 3, 4, 5, 6, 7}. Between the above values find w(0) that minimises the
MSE. A new data sample

(
x(5), y(5)

)
= (2, 20) is added. Evaluate new error measure

and corresponding minimiser.

You may find it useful to fill in the missing entries of the following table:

w(0) = 1 w(0) = 2 w(0) = 3 w(0) = 4 w(0) = 5 w(0) = 6 w(0) = 7

y(1) = 1
y(2) = 2
y(3) = 3
y(4) = 4

MSE(w) · 2s
y(5) = 20

MSE(w) · 2s

Some help: 192 = 361, 182 = 324, 172 = 289, 162 = 256, 152 = 225, 142 = 196, 132 = 169.

2. Repeat the same exercise for what is known as the Mean Absolute Error (MAE),
i.e.

MAE(w(0)) =
1

s

s∑
i=1

|y(i) − w(0)| .

What do you observe, in particular with regards to the outlier y(5)?

Problem 2. Assume we are given s i.i.d. samples x1, . . . , xs, and we know that they are
drawn from a normal distribution with mean µ and variance σ2. We do not know these
two parameters and want to estimate them from the data using the maximum likelihood
principle.

1. Write down the likelihood for this data, i.e., the joint probability distribution
function ρ(x1, . . . , xs |µ, σ2), where the notation reminds us that this PDF depends
on the two parameters µ and σ2.
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2. Use the maximum likelihood principle to estimate the parameter µ. More precisely,
compute the gradient of the negative log-likelihood with respect to µ, set it to zero
and solve for µ. This gives us an estimator µ̂ of µ that depends on the data.

3. Use the maximum likelihood principle to estimate the parameter σ2. Proceed in the
same manner as in section 2, but this time with the parameter σ2 instead of µ.

4. Verify that −∇ log (ρ(w)) = 0 automatically implies ∇ρ(w) = 0, regardless of the
choice of probability density function ρ.

Problem 3. In the lecture we have seen that the the general MSE cost function for the
linear regression is of the form

MSE(W) =
1

2s
∥XW −Y∥2 ,

where
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and the norm ∥·∥ is a Frobenius norm defined by

∥M∥2 =
∑
i,j

m2
i,j.

Prove that the gradient of MSE is given by

∇MSE(w) =
1

s
X⊤ (XW −Y) .

Problem 4. Compute the solution of the polynomial regression problem

ŵ = arg min
w∈Rd+1

{
1

2s

s∑
i=1

∣∣⟨ϕ(x(i)),w⟩ − y(i)
∣∣2}

by hand, for the data samples (x(1), y(1)) = (0, 0), (x(2), y(2)) = (1/4, 1), (x(3), y(3)) =
(1/2, 0), (x(4), y(4)) = (3/4,−1) and (x(5), y(5)) = (1, 0) and choices

1. d = 1,

2. d = 2,

3. d = 3.


