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Question 1 [18 marks]. Sam is considering an investment in the shares of Derby
Industries Inc but does not know much about the company. In a personal finance blog
Sam reads that the author believes the current Derby Industries share price of $23 per
share accurately reflects the company’s balance sheet and cashflow. Therefore Sam uses
a stochastic process, Xt to model the share price where t is measured in days. The
model used is

Xt = 23 +Wt

where Wt is a standard Wiener Process.

(a) Find the value of E[Xt] for t ≥ 0. [2]

Solution:

E[Xt] = E[23 +Wt] = 23 + E[Wt] = 23 + 0 = 23 as Wt ∼ N(0, 1)

(b) Determine whether Xt is a martingale with respect to its natural filtration. [4]

Solution:
(a) Xt is a martingale with respect to the filtration Ft if E[Xt|Fs] = Xs for all
t > s,
here E[Xt|Fs] = E[23 +Wt|Fs] = 23 + E[Wt|Fs] = 23 + E[Ws + (Wt −Ws)|Fs] =
23 +Ws = Xs as (Wt −Ws) ∼ N(0, t− s),
hence Xt is a martingale.

(c) What is the probability that the share price will be between $22 and $24 after 5
days under this model? [4]

Solution:

Pr(22 ≤ X5 ≤ 24) = Pr(−1 ≤ X5–X0 ≤ 1) and

X5–X0 ∼ N(0, 5) therefore

Pr(−1 ≤ X5–X0 ≤ 1) = Φ(1/
√
5) + Φ(−1/

√
5)

= 0.673–(1–0.673) from standard normal statistical tables

= 0.346

(d) What are the weaknesses of this model when evaluating the risk of investing in
Derby Industries shares? [8]

Solution:
The weaknesses of this model are

• no drift parameter

• therefore no long term expected positive return from the share

• volatility parameter = 1

• therefore all volatility normally distributed
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• . . . and proportional to time

• this does not capture well the risk of investment in the shares

• studies have shown log normal better than normal for equity risk

• potential over-reliance on one data point for X0

Parts a, b, c similar to exercise sheet, Part d unseen.
IFoA CM2 syllabus areas 4.4.1, 4.4.2, 4.4.3.

Question 2 [22 marks]. Consider the following stochastic differential equation

dXt = Ytdt+ zWt

where Yt is a stochastic process, z is a constant and Wt represents standard Brownian
Motion.

(a) Write down Ito’s lemma for f(Xt, t) where f is a suitable function. [3]

Solution:
By Ito’s lemma

df(Xt, t) = [
∂f

∂t
+

∂f

∂x
At +

1

2

∂2f

∂x2
z2]dt+

∂f

∂x
zdWt

(b) Determine df(Xt, t) where f(Xt, t) = e2tXt , simplifying your answer where
possible. [3]

Solution:
If f(Xt, t) = e2tXt ,

∂f

∂x
= 2te2tXt ,

∂2f

∂x2
= 4t2e2tXt

∂f

∂t
= 2Xte

2tXt

inserting these in the formula for Ito’s lemma in (a) we get

df(Xt, t) = [2Xte
2tXt + 2te2tXtAt +

1

2
4t2e2tXtz2]dt+ 2te2tXtzdWt

= 2e2tXt [(Xt + tAt + t2z2)dt+ tzdWt]

(c) If Yt is replaced with a constant y, what function g(Xt, t) is required such that the
application of Ito’s lemma leads to g(Xt, t) representing Geometric Brownian
Motion? [1]

Solution:
g(Xt, t) = eXt leads to Geometric Brownian Motion
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(d) State the probability distribution that Xt follows under the function in (c) above. [3]

Solution:
then Xt has a log normal distribution such that
logXt ∼ N(logX0 + (y– 1

2
z2)t, z2t).

To get full marks for this part students need to specify the full distribution
parameters not just state log normal and express in terms of y, z not µ and σ.

(e) If y = 0.052, z = 0.149 and X0 = 150, find a 95% confidence interval for X15. [5]

Solution:
Now logXt ∼ N(logX0 + (y– 1

2
z2)t, z2t),

so logX15 ∼ N(log150 + 15(0.052– 1
2
× 0.1492), 0.1492 × 15)

logX15 ∼ N(5.624128, 0.333015)
and a 95% confidence interval for logX15 is
5.624128± 1.96(0.149)

√
15

= (4.493062, 6.755194)
and a 95% confidence interval for X15 is
(e4.493062, e6.755194) = (89.39, 858.51)

(f) If Xt is to be used to model the value of an equity portfolio, how realistic is it to
use a constant y rather than a stochastic process Yt? [7]

Solution:
constant y rather than stochastic Yt

• helps by allowing log normal assumptions using GBM

• however does not allow for number of real life properties of drift

• different risk premia observed at different times

• risk premia varying alongside default risk

• wealth effects

• ompensation for varying volatility related risks over time

Parts a, b, e similar to seminar, Part c, d from lectures, f unseen and higher order skills.
IFoA CM2 syllabus areas 4.4.1, 4.4.4, 4.4.5.
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Question 3 [15 marks]. A European call option, with value ct at time t, is written
on a non-dividend paying stock, with price St at time t. The call option matures at
time T and the strike price is K. The continuously compounded risk-free rate is r.

A portfolio contains one call option and Ke−(T−t)r cash.

(a) Prove that, at time T , the value of the portfolio will always be greater than or
equal to the value of the share, ST . [3]

Solution:
At time T , the call either expires worthless or is exercised.
If the call is not exercised, then this is because K > ST . Then the value of the
portfolio is K > ST .
If the call is exercised, then the portfolio value is ST −K +K = ST .
In either case, the portfolio value is greater than or equal to the share.

(b) State the upper and lower bound for the value of the call option, ct. [4]

Solution:
Upper bound: ct ≤ St.
Lower bound:
The portfolio is greater than or equal to the value of the share at time T .
By the principle of no arbitrage, it must also be the case that at time t, the
portfolio value is greater than or equal to the value of the share:
ct +Ke−(T−t)r ≤ St.

The prices of a stock follow a geometric Brownian motion with parameters
µ = 0.3 and σ = 0.2. Presently, the stock’s price is £50. Consider a call option
having nine months until its expiration time and having a strike price of £45.

(c) What is the probability that the call option will be exercised? [4]

Solution:
Let S(t) denote the price of the Bancroft Stock at time t, where t is measured in
years. We are told that S(t) is geometric Brownian motion with drift parameter
µ = 0.3, volatility parameter σ = 0.2 and starting parameter S = 50, that is

S(t) = S exp(µt+ σW (t)) ,

where W (t) denotes the Wiener process. Let K = 45 denote the strike price and
let t = 3/4 denote the expiration time of the call option.
The option will be exercised if S(t) > K. Thus, the desired probability is

P(S(t) > K) = P(S exp(µt+ σW (t)) > K) = P

(
W (t)√

t
>

log K
S
− µt

σ
√
t

)

= P
(
W (t)√

t
> −0.91

)
= 1− Φ(−0.91) = 1− 0.1814 = 0.8186.

Here we have used the fact that

W (t)√
t

∼ N(0, 1) .

Thus the probability that the call option will be exercised is 0.8186.
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(d) If the interest rate is 3%, find the price of the call option using the Black-Scholes
formula. [4]
Solution:
Let r = 0.03 denote the nominal interest rate. The Black-Scholes price C of the
call is given by the Black-Scholes Formula

C = SΦ(ω)−Ke−rtΦ(ω − σ
√
t) ,

where

ω =
rt+ σ2t

2
− log K

S

σ
√
t

.

Now
ω = 0.824806 and ω − σ

√
t = 0.651600 ,

so

C = 50Φ(0.82)− 45e−0.03×3/4Φ(0.65) = 50Φ(0.82)− 43.998806Φ(0.65)

= 50× 0.7939− 43.998806× 0.7422 = 7.0391 .

Thus, the Black-Scholes price of the call option is 7.0391.

Part a from lectures, Part c, d similar to seminar, Part b unseen and higher order skills.
IFoA CM2 syllabus areas 6.1.8, 6.1.9.

Question 4 [25 marks]. A short rate of interest is governed by the Vasicek model,
i.e.

drt = −a(rt − µ)dt+ σdBt

where Bt is a standard Brownian motion and a, µ > 0 are constants.

A stochastic process {Xt : t ≥ 0} is defined by Xt = eat+b · rt, where b is a constant.

(a) Derive an equation for dXt. [5]

Solution:

dXt =
∂Xt

∂t
dt+

∂Xt

∂rt
drt +

∂2Xt

∂rt2
(drt)

2

∂Xt

∂t
= aeat+brt,

∂Xt

∂rt
= eat+b,

∂2Xt

∂rt2
= 0

Therefore,

dXt = aeat+brtdt+ eat+b(−a(rt − µ)dt+ σdBt)

= aµeat+bdt+ σeat+bdBt

© Queen Mary University of London (2022) Continue to next page



MTH6112 (2022) Page 7

(b) Solve the equation to find Xt. [5]

Solution:
Integrate both sides from 0 to t:

Xt −X0 =

∫ t

0

aµeas+bds +

∫ t

0

σeas+bdBs

= µeb(eat − 1) + σeb
∫ t

0

easdBs

⇒Xt = X0 + µeb(eat − 1) + σeb
∫ t

0
easdBs

(c) Prove that:

rt = µ+ (r0 − µ)e−at + σ

∫ t

0

ea(s−t)dBs.

[5]

Solution:
We shall be looking for a function u(t) such that

rt − µ = u(t)e−at (1)

Then u(t) = eat(rt − µ) = f(t, r). ⇒ u(0) = r0 − µ.
Use the chain rule,

du = f
′

tdt+ f
′

rdr +
1

2
f

′′

rr(dr)
2

f
′

t =
∂

∂t
(eat(r − µ)) = aeat(r − µ)

f
′

r =
∂

∂r
(eat(r − µ)) = eat

f
′′

rr = 0

Therefore,

du(t) = aeat(r − µ)dt+ eatdr

= aeat(r − µ)dt+ eat(−a(r − µ)dt+ σdBt)

= σeatdBt

Hence
∫ t

0
du(s) = σ

∫ t

0
easdBs, or equivalently,

u(t)− u(0) = σ

∫ t

0

easdBs (2)

It follows from (1) that r0 − µ = u(0). So (2) can be rewritten as

u(t) = u(0) + σ

∫ t

0

easdBs = r0 − µ+ σ

∫ t

0

easdBs
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and we obtain (again due to (1)) that

rt = µ+ e−at

(
r0 − µ+ σ

∫ t

0

easdBs

)
= r0e

−at + µ(1− e−at) + σe−at

∫ t

0

easdBs

= (r0 − µ)e−at + µ+ σe−at

∫ t

0

easdBs □

(d) Determine the probability distribution of rt and the limiting distribution for large
t. [5]

Solution:

dBs ∼ N(0, ds)

⇒σea(s−t)dBs ∼ N(0, σ2e2a(s−t)ds)

⇒
∫ t

0

σea(s−t)dBs ∼ N(0,

∫ t

0

σ2e2a(s−t)ds)

The distribution of rt is given by:

rt ∼ N(µ+ e−at(r0 − b),

∫ t

0

σ2e2a(s−t)ds) = N(µ+ e−at(r0 − µ),
σ2

2a
(1− e−2at))

As t → ∞, e−2at → 0, so we get:

rt ∼ N(µ,
σ2

2a
)

(e) Derive, in the case where s < t, the conditional expectation E[rt|Fs], where
{Fs : s ≥ 0} is the filtration generated by the Brownian motion Bs. [5]

Solution:

E[rt|Fs] = E[µ+ (r0 − µ)e−at + σ

∫ t

0

ea(u−t)dBu|Fs]

= µ+ (r0 − µ)e−at + E[σ

∫ t

0

ea(u−t)dBu|Fs]

= µ+ (r0 − µ)e−at + E[σ

∫ s

0

ea(u−t)dBu|Fs] + E[σ

∫ t

s

ea(u−t)dBu|Fs]

= µ+ (r0 − µ)e−at + E[σ

∫ s

0

ea(u−t)dBu|Fs]

= µ+ (r0 − µ)e−at + e−a(t−s)E[σ

∫ s

0

ea(u−s)dBu|Fs]

= µ+ (r0 − µ)e−at + ea(s−t)[rs − µ(r0 − b)e−as]

= µ(1− ea(s−t)) + ea(s−t)rs

The last step is from (c) with s replaced by u, and t replaced by s.

Part c, d from lectures, Part a, b similar to seminar, Part e application of lecture
material.
IFoA CM2 syllabus areas 4.5.3, 4.5.4, 4.5.6, 4.4.2, 4.4.6.
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Question 5 [20 marks]. A credit analyst wishes to model the probability that a
bond issued by a shipping company defaults, using a time varying default transition
intensity λ(t).

(a) Draw diagram representing a two-state model that could be used in this scenario. [2]

Solution:
Two-state model:

The credit analyst uses a quadratic form for the default transition intensity

λ(t) =
2 + 10t− t2

300

where 1 ≤ t ≤ 10.

(b) Calculate the probability that the bond does not default between times 2 and 6. [6]

Solution:
Probability that bond does not default between t=2 and t=6

= exp[−
∫ 6

2

λ(t)dt]

= exp[− 1

300

∫ 6

2

(2 + 10t− t2)dt]

= exp[− 1

300
(2t+ 5t2 − 1

3
t3)|62]

= exp(−0.8622) = 0.422

(c) Explain how the model could be modified to allow for the default transition
intensity to depend on economic growth as well as time. [6]

Solution:
For the default transition intensity to depend on economic growth as well as time
we would need a new function λ in the form λ(Xt, t) where Xt is a stochastic
variable used to model economic growth over time. It is likely that we would want
Xt to have properties of or similar to geometric Brownian motion with a drift
parameter linked to long term economic growth.

A credit rating agency has given the bond a B rating.

(d) Explain how the two-state model could be extended to use information from the
credit rating agency including how default transition intensities are estimated. [6]

Solution:
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A multi-state model would have each rating given by the agency as a state along
with the in-default state. A transition probability matrix (usually one year
probabilities) could then be developed from past experience data of the ratings
agency and these probabilities in a Markov jump process used to calculated
default probabilities given a starting credit rating.

Parts a from lecture, Part b similar to seminar, Part c unseen and higher order skills,
Part d application of lecture material.
IFoA CM2 syllabus areas 4.6.2, 4.6.4, 4.6.6.

End of Paper.
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