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Question 1 [30 marks].

Let Wt be a standard Brownian Motion.

(a) The simplest version of the Ornstein-Uhlenbeck process Xt is defined by

Xt = e−tWt, for some constant θ > 0.

(i) Does this process have independent increments? [3]

(ii) Is Xt a Brownian Motion? [3]

(iii) What is the distribution of the increment Xt −Xs for t > s? [3]

(iv) Compute µm = E[(Xt)
m] for all integer m > 0. [3]

(v) Compute Cov(Xt, Xs). [3]

Solution

(i) Increments Xti+1
−Xti can be expressed in terms of the Brownian

motion as follows:

Xti+1
−Xti = e−ti+1Wti+1

− e−tiWti

= e−ti+1(Wti+1
−Wti) + (e−ti+1 − e−ti)Wti .

It is clear that the first term in this expression is independent from all

previous history of the Brownian motion (see properties of a Brownian

motion). However, the second one is not. To formally prove that the

increments are not independent, let us take three different times

t < s < r and calculate the covariance Cov [Xr −Xs, Xs −Xt].

Cov [Xr −Xs, Xs −Xt] = Cov [Xr, Xs] + Cov [Xs, Xt]

−Cov [Xr, Xt]− Cov [Xs, Xs]

= e−r−sCov [Wr,Ws] + e−t−sCov [Wt,Ws]

−e−t−rCov [Wt,Wr]− e−2sVar [Ws]

= e−s−rs+ e−t−st− e−t−rt− e−2ss

=
(
e−r − e−s

) (
se−s − te−t

)
> 0.

(ii) It follows from the above that Xt is not a Brownian Motion.
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(iii) An increment Xt −Xs can be written as a sum of two independent

Gaussian random variables. Indeed

Xt −Xs = e−t [Wt −Ws] +
(
e−t − e−s

)
[Ws −W0] .

Thus, Xt −Xs is a Gaussian random variable with mean zero and

variance

Var [Xt −Xs] = e−2t (t− s) +
(
e−t − e−s

)2
s = te−2t + se−2s − 2se−t−s.

(iv) For the m-th moment we use the formula derived in lectures:

µm = E
[
e−mtWm

t

]
=

{
0, if m is odd,

e−2pt (2p)!
2pp!

tp, if m = 2p (is even).

(v) Finally, for the covariance (which in fact has been computed above)

one has:

Cov [Xt, Xs] = e−t−sCov [Wt,Ws] = e−t−smin(t, s).

(b) Consider a Brownian Motion Bt = µt+ σWt, where Wt is the standard

Wiener Process and µ, and σ are the parameters of the Brownian Motion.

We also define the related Geometric Brownian St by St = eBt .

Are the following processes martingale or not, with respect to the natural

filtration, i.e. the one associated with Wt?

(i) Zt = 3Wt; [5]

(ii) Zt = W 2
t − 2t; [5]

(iii) Zt = e−µt−σ2t
2 St. [5]

Solution For the process Xt to be a martingale with respect to filtration

Fs it is sufficient to satisfy

E [|Xt|] < ∞,∀t
E [Xt|Fs] = Xs,∀t > s.

(i) Yes. Using the properties of conditional expectation discussed in the

lecture we have

E [3Wt|Fs] = E [3(Wt −Ws) + 3Ws|Fs]
linearity

= 3E [Wt −Ws|Fs] + 3E [Ws|Fs]
independence

= 3E [Wt −Ws] + 3E [Ws|Fs]

= 3E [Ws|Fs]
measurability

= 3Ws.

© Queen Mary University of London (2023) Continue to next page



MTH6112 (2023) Page 4

To estimate the expectation we use Schwartz inequality

E [|Wt|] ≤
√
Var [Wt] =

√
t < ∞.

Thus Wt is a martingale with respect to the natural filtration {Ft}t≥0.

(ii) No. Using the properties of conditional expectation discussed in the

lecture we have

E
[
W 2

t − 2t|Fs

]
= E

[
(Wt −Ws +Ws)

2 − 2t|Fs

]
linearity

= E
[
(Wt −Ws)

2|Fs

]
+ E

[
W 2

s − 2t|Fs

]
measurability

= E
[
(Wt −Ws)

2|Fs

]
+W 2

s − 2t
independence

= E
[
(Wt −Ws)

2]+W 2
s − 2t

= t− s+W 2
s − 2t = W 2

s − s− t ̸= W 2
s − 2s.

Thus W 2
t − t is not a martingale with respect to a natural filtration

{Ft}t≥0.

(iii) Yes. Using the properties of conditional expectation discussed in the

lecture we have

E
[
e−µt−σ2t

2 eµt+σWt |Fs

]
= E

[
e−

σ2t
2

+σWt |Fs

]
= E

[
eσ(Wt−Ws)−σ2t

2
+σWs|Fs

]
measurability

= E
[
eσ(Wt−Ws)|Fs

]
eσWs−σ2t

2

independence
= E

[
eσ(Wt−Ws)

]
eσWs−σ2t

2

= E
[
eN(0,σ

2(t−s))
]
eσWs−σ2t

2

= e
σ2(t−s)

2
+σWs−σ2t

2 = e−
σ2s
2

+σWs

= e−µs−σ2s
2 Ss.

The ”discounted” Geometric Brownian Motion is a positive valued

process and thus

E
[∣∣∣e−µt−σ2t

2 St

∣∣∣] = e−µt−σ2t
2 E [St] = e−µt−σ2t

2 eµt+
σ2t
2 = 1 < ∞.

Part a, b similar to lecture and seminar.

IFoA CM2 syllabus areas 4.4.1, 4.4.2, 4.4.3, 4.5.7.
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Question 2 [20 marks]. A short rate of interest is governed by the Vasicek

model, i.e.

drt = −a(rt − µ)dt+ σdBt

where Bt is a standard Brownian motion and a, µ > 0 are constants.

You are given that rt has the following explicit expression:

rt = µ+ (r0 − µ)e−at + σ

∫ t

0

ea(s−t)dBs.

(a) Find the probability P[rt < 0] when t → ∞. Please show the detailed

calculation , rather than use the result on relevant slides directly. [10]

Solution:

dBs ∼ N(0, ds)

⇒σea(s−t)dBs ∼ N(0, σ2e2a(s−t)ds)

⇒
∫ t

0

σea(s−t)dBs ∼ N(0,

∫ t

0

σ2e2a(s−t)ds)

The distribution of rt is given by:

rt ∼ N(µ+ e−at(r0 − b),

∫ t

0

σ2e2a(s−t)ds) = N(µ+ e−at(r0 − µ),
σ2

2a
(1− e−2at))

As t → ∞, e−2at → 0, so we get:

rt ∼ N(µ,
σ2

2a
)

Therefore,

lim
t→∞

P(rt < 0) = Φ

(
−µ

√
2a

|σ|

)
=

1√
2π

∫ −µ
√
2a

|σ|

−∞
e−

x2

2 dx.

(b) State what happens to P[rt < 0] as |σ| → 0. [5]

Solution:

When |σ| → 0,

lim
t→∞

P(rt < 0) = Φ (−∞) = 0,

i.e. this probability decreases to 0 as |σ| → 0
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(c) Critically evaluate the Vasicek model. [5]

Solution:

According to the result of (b), the unfortunate property of this model is

that rt can be negative.

This is unrealistic because interest rate rarely become negative.

However, the probability of such an event is small when σ is small.

The most important good feature of this model is the ”mean reversion”

property of rt: the value rt will eventually return to its long-term mean µ.

Vasicek model is a one-factor model, and there are some short-comings:

• Single factor short-rate models mean that all maturities behave in the

same way - there is no independence.

• There is little consistency in valuation between the models.

• They are difficult to calibrate.

Part a, b from lectures, c similar to seminar.

IFoA CM2 syllabus areas 4.5.2, 4.5.6, 4.5.7.

Question 3 [20 marks]. The company F. Bancroft & Sons issued

zero-coupon bonds with expiration time of 5 years today, and the total nominal

value of £1 million. The total value of the company now stands at £1.2 million.

A continuously compounded interest rate is 3% per annum. The total value of

the company follows the Geometric Brownian motion with parameters µ = 0.3

and σ = 0.1.

(a) Give three examples of credit risk models. Which of them are structural

model(s)? [4]

(b) Under the Merton model, find the current value of the shareholders’

equity. [8]

(c) In 2 years time, the company’s value drops by 10%. What is the probability

of F. Bancroft & Sons’s default on its obligation to bondholders? [8]

Solution:

(a) Three examples: The Merton model, two-state model for credit ratings, and

The JLT model. The Merton model is the simplest example of a structural

model.
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(b) According to the Merton model, the shareholders can be treated as having

a European Call option on the assets of the company with strike price

L0 = £1 million and maturity T = 5 years. Thus the value of shareholders’

equity is equal to

E0 = F0Φ (ω)− L0e
−rTΦ

(
ω − σ

√
T
)
.

First we calculate ω by using the formula

ω =
log F0

L0
+ rT

σ
√
T

+
1

2
σ
√
T = 1.5980,

ω − σ
√
T =

log F0

L0
+ rT

σ
√
T

− 1

2
σ
√
T = 1.3744.

Plugging the numbers into the above formula gives

E0 = 1.2× 0.944979− 0.8481× 0.915341 = £ 0.3577millions.

(c) In two years the value of the company drops to F2 = F0 × 0.9 = £ 1.08

millions. The company’s value, under the assumptions of the Black-Scholes

theory, follows the Geometric Brownian Motion.

F2+t = F2e
µt+σWt .

The company would default if the value of the company drops below the

repayment value L0.

P (default) = P (F5 < L0) = P
(
F2e

3µ+σW3 < L0

)
= P

(
W3 <

ln L0

F2
− 3µ

σ

)

= Φ

(
ln L0

F2
− 3µ

σ
√
T

)
= Φ(−4.5879) = 2.2391× 10−6.

Part a from lectures, b, c similar to seminar.

IFoA CM2 syllabus areas 4.6.2, 4.6.3.
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Question 4 [30 marks].

The price of a share S(t) evolves according to a Geometric Brownian Motion with

parameters S, µ, σ, i.e. S(t) = Seµt+σW (t). The continuously compounded

interest rate is r.

An exotic derivative on this share has the payoff function

R(T ) =
1

T

∫ T

0

S(t)(S(T )− c)dt.

Where c is a constant. The payoff time is T .

(a) Show that E
(
eaW (t)+bW (t+s)

)
= e

(a+b)2

2
t+ b2

2
s, where t > 0 and s > 0. [10]

Solution:

Denote Y = aW (t) + bW (t+ s). Notice that

Y = (a+ b)W (t) + b(W (t+ s)−W (t)).

So, Y is a sum of 2 independent random variables and hence

eY = e(a+b)W (t) × eb(W (t+s)−W (t)) is a product of two independent random

variables. It follows that

E
(
eaW (t)+bW (t+s)

)
= E

[
e(a+b)W (t) × eb(W (t+s)−W (t))

]
= E

[
e(a+b)W (t)

]
×E

[
eb(W (t+s)−W (t))

]
.

We know that E
(
eσW (t)

)
= e

σ2

2
t. Since W (t+ s)−W (t) ∼ N (0, s) and

therefore

E
[
eb(W (t+s)−W (t))

]
= E

[
ebW (s)

]
= e

b2

2
s.

Hence

E
(
eaW (t)+bW (t+s)

)
= e

(a+b)2

2
t × e

b2

2
s = e

(a+b)2

2
t+ b2

2
s. (1)

(b) Use the result obtained in (a), calculate the no-arbitrage price of this exotic

derivative. [10]

Solution:

By Theorem 5.2,

C = e−rT Ẽ
(
1

T

∫ T

0

S(t)(S(T )− c)dt

)
=

e−rT

T
Ẽ
(∫ T

0

S(t)S(T )dt− c

∫ T

0

S(t)dt

)
.

(2)

To compute this expectation over the risk-neutral probability, we have to

turn Ẽ into E by replacing S(t) and S(T ) by S̃(t) and S̃(T ). Thus, by

Theorem 5.3,

Ẽ
(∫ T

0

S(t)S(T )dt

)
= E

(∫ T

0

S̃(t)S̃(T )dt

)
.
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It is possible to change the order of the two operations (Slide 37, Week 3-4):

E
(∫ T

0

S̃(t)S̃(T )dt

)
=

∫ T

0

E
(
S̃(t)S̃(T )

)
dt.

In words, rather than first computing the integral and then the expectation,

we can first compute the expectation and after that compute the integral.

We have that

S̃(t)S̃(T ) = Seµ̃t+σW (t) × Seµ̃T+σW (T ) = S2eµ̃(t+T )+σW (t)+σW (T )

and hence

E
(
S̃(t)S̃(T )

)
= S2eµ̃(t+T )E

(
eσ(W (t)+W (T ))

)
.

Using the result stated in (a) with a = b = σ and s = T − t we obtain

E
(
S̃(t)S̃(T )

)
= S2eµ̃(t+T )+2σ2t+σ2

2
(T−t) = S2eµ̃(t+T )+1.5σ2t+σ2

2
T .

Since µ̃ = r − σ2

2
, we have

E
(
S̃(t)S̃(T )

)
= S2erT+(r+σ2)t.

Integrating the last expression, we obtain

E
(∫ T

0

S̃(t)S̃(T )dt

)
= S2erT

∫ T

0

e(r+σ2)tdt = S2erT
1

r + σ2
(e(r+σ2)T − 1).

Similarly, for the second half of (2):

Ẽ
(
c

∫ T

0

S(t)dt

)
= cE

(∫ T

0

S̃(t)dt

)
.

Since

S̃(t) = Seµ̃t+σW (t),

we have

E
(
S̃(t)

)
= Se(µ̃+

1
2
σ2)t,

so

E
(∫ T

0

S̃(t)dt

)
= E

(∫ T

0

Se(µ̃+
1
2
σ2)tdt

)
=

S

r

(
er−

1
2
σ2+ 1

2
σ2T − 1

)
.

Finally we obtain from (2):

C =
S2

(r + σ2)T
(e(r+σ2)T − 1)− cSe−rT

rT

(
er−

1
2
σ2+ 1

2
σ2T − 1

)
.

© Queen Mary University of London (2023) Continue to next page



MTH6112 (2023) Page 10

(c) Consider another exotic call option on the same share with expiration time

t.

Its strike price K depends on S(s) and W (s), where s < t, i.e.

K = e−σW (s) × (S(s))2.

Denote by C̃ the no-arbitrage price of this option.

Denote by C(S, T,K, σ, r) the Black-Scholes price of the standard European

call option.

Using the properties of the Wiener process, write down the expression for

the price C̃ in terms of the expectation of the risk-neutral process S̃(t) and

µ̃, and show C̃ = C(S ′, T ′, K ′, σ′, r′). (Please write down the explicit

expression of S ′, T ′, K ′, σ′, r′). [10]

Solution:

In our case, by the definition of our call option, the expiration time T = t

and the payoff function G depends on 2 variables, S(s) and S(t), as follows:

G((S(s), S(t)) = (S(t)−K)+ = (S(t)− e−σW (s) × (S(s))2)+.

The price C̃ is

C̃ = e−rtE(S̃(t)− e−σW (s) × (S̃(s))2)+ = e−rtE(Seµ̃t+σW (t) − e−σW (s)Se2µ̃s+2σW (s))+

= e−rtE
[
eµ̃s+σW (s)(Seµ̃(t−s)+σ(W (t)−W (s)) − Seµ̃s)+

]
.

Since the random variables W (t)−W (s) and W (s) are independent (as

increments of the Wiener process), also the random variables eµ̃s+σW (s) and

(Seµ̃(t−s)+σ(W (t)−W (s)) − Seµ̃s)+ are independent and therefore the

expectation of their products splits into the product of their expectations:

C̃ = e−rtE
(
eµ̃s+σW (s)

)
× E(Seµ̃(t−s)+σ(W (t)−W (s)) − Seµ̃s)+. (3)

We know that E
(
eµ̃s+σW (s)

)
= ers. Also, by the definition of the Wiener

process, W (t)−W (s) has the same distribution as W (t− s) and so

E(Seµ̃(t−s)+σ(W (t)−W (s)) − Seµ̃s)+ = E(Seµ̃(t−s)+σW (t−s)) − Seµ̃s)+.

Plugging the last two relation into (3), we obtain

C̃ = e−r(t−s)E(Seµ̃(t−s)+σW (t−s) − Seµ̃s)+ = C(S, t− s, Seµ̃s, σ, r).

Part a similar to seminar, Part b, c application of lecture material.

IFoA CM2 syllabus areas 4.4.2, 6.1.8, 6.1.9.
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End of Paper.
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