University of London

Main Examination period 2023 - May/June - Semester B

MTH6112: Actuarial Financial Engineering

Duration: 2 hours

The exam is intended to be completed within 2 hours. However, you will have a period of 4 hours to complete the exam and submit your solutions.

For actuarial students only: This module also counts towards IFoA exemptions. For your submission to be eligible, you must submit within the first 3 hours.

You should attempt ALL questions. Marks available are shown next to the questions.

All work should be handwritten and should include your student number. Only one attempt is allowed - once you have submitted your work, it is final.

In completing this assessment:

- You may use books and notes.
- You may use calculators and computers, but you must show your working for any calculations you do.
- You may use the Internet as a resource, but not to ask for the solution to an exam question or to copy any solution you find.
- You must not seek or obtain help from anyone else.

When you have finished:

- scan your work, convert it to a single PDF file, and submit this file using the tool below the link to the exam;
- e-mail a copy to maths@qmul.ac.uk with your student number and the module code in the subject line;

Examiners: L. Fang, F. Parsa

(C) Queen Mary University of London (2023)

Question 1 [30 marks].

Let W_{t} be a standard Brownian Motion.
(a) The simplest version of the Ornstein-Uhlenbeck process X_{t} is defined by

$$
X_{t}=\mathrm{e}^{-t} W_{t}, \quad \text { for some constant } \theta>0
$$

(i) Does this process have independent increments?
(ii) Is X_{t} a Brownian Motion?
(iii) What is the distribution of the increment $X_{t}-X_{s}$ for $t>s$?
(iv) Compute $\mu_{m}=\mathbb{E}\left[\left(X_{t}\right)^{m}\right]$ for all integer $m>0$.
(v) Compute $\operatorname{Cov}\left(X_{t}, X_{s}\right)$.

Solution

(i) Increments $X_{t_{i+1}}-X_{t_{i}}$ can be expressed in terms of the Brownian motion as follows:

$$
\begin{aligned}
X_{t_{i+1}}-X_{t_{i}} & =\mathrm{e}^{-t_{i+1}} W_{t_{i+1}}-\mathrm{e}^{-t_{i}} W_{t_{i}} \\
& =\mathrm{e}^{-t_{i+1}}\left(W_{t_{i+1}}-W_{t_{i}}\right)+\left(\mathrm{e}^{-t_{i+1}}-\mathrm{e}^{-t_{i}}\right) W_{t_{i}} .
\end{aligned}
$$

It is clear that the first term in this expression is independent from all previous history of the Brownian motion (see properties of a Brownian motion). However, the second one is not. To formally prove that the increments are not independent, let us take three different times $t<s<r$ and calculate the covariance $\operatorname{Cov}\left[X_{r}-X_{s}, X_{s}-X_{t}\right]$.

$$
\begin{aligned}
\operatorname{Cov}\left[X_{r}-X_{s}, X_{s}-X_{t}\right]= & \operatorname{Cov}\left[X_{r}, X_{s}\right]+\operatorname{Cov}\left[X_{s}, X_{t}\right] \\
& -\operatorname{Cov}\left[X_{r}, X_{t}\right]-\operatorname{Cov}\left[X_{s}, X_{s}\right] \\
= & \mathrm{e}^{-r-s} \operatorname{Cov}\left[W_{r}, W_{s}\right]+\mathrm{e}^{-t-s} \operatorname{Cov}\left[W_{t}, W_{s}\right] \\
& -\mathrm{e}^{-t-r} \operatorname{Cov}\left[W_{t}, W_{r}\right]-\mathrm{e}^{-2 s} \operatorname{Var}\left[W_{s}\right] \\
= & \mathrm{e}^{-s-r} s+\mathrm{e}^{-t-s} t-\mathrm{e}^{-t-r} t-\mathrm{e}^{-2 s} s \\
= & \left(\mathrm{e}^{-r}-\mathrm{e}^{-s}\right)\left(s \mathrm{e}^{-s}-t \mathrm{e}^{-t}\right)>0 .
\end{aligned}
$$

(ii) It follows from the above that X_{t} is not a Brownian Motion.
(iii) An increment $X_{t}-X_{s}$ can be written as a sum of two independent Gaussian random variables. Indeed

$$
X_{t}-X_{s}=\mathrm{e}^{-t}\left[W_{t}-W_{s}\right]+\left(\mathrm{e}^{-t}-\mathrm{e}^{-s}\right)\left[W_{s}-W_{0}\right] .
$$

Thus, $X_{t}-X_{s}$ is a Gaussian random variable with mean zero and variance

$$
\operatorname{Var}\left[X_{t}-X_{s}\right]=\mathrm{e}^{-2 t}(t-s)+\left(\mathrm{e}^{-t}-\mathrm{e}^{-s}\right)^{2} s=t e^{-2 t}+s e^{-2 s}-2 s e^{-t-s} .
$$

(iv) For the m-th moment we use the formula derived in lectures:

$$
\mu_{m}=\mathbb{E}\left[\mathrm{e}^{-m t} W_{t}^{m}\right]= \begin{cases}0, & \text { if } m \text { is odd } \\ \mathrm{e}^{-2 p t} \frac{(2 p)!}{2^{p p!}} t^{p}, & \text { if } m=2 p \text { (is even). }\end{cases}
$$

(v) Finally, for the covariance (which in fact has been computed above) one has:

$$
\operatorname{Cov}\left[X_{t}, X_{s}\right]=\mathrm{e}^{-t-s} \operatorname{Cov}\left[W_{t}, W_{s}\right]=\mathrm{e}^{-t-s} \min (t, s)
$$

(b) Consider a Brownian Motion $B_{t}=\mu t+\sigma W_{t}$, where W_{t} is the standard Wiener Process and μ, and σ are the parameters of the Brownian Motion. We also define the related Geometric Brownian S_{t} by $S_{t}=\mathrm{e}^{B_{t}}$.
Are the following processes martingale or not, with respect to the natural filtration, i.e. the one associated with W_{t} ?
(i) $Z_{t}=3 W_{t}$;
(ii) $Z_{t}=W_{t}^{2}-2 t$;
(iii) $Z_{t}=\mathrm{e}^{-\mu t-\frac{\sigma^{2} t}{2}} S_{t}$.

Solution For the process X_{t} to be a martingale with respect to filtration \mathcal{F}_{s} it is sufficient to satisfy

$$
\begin{aligned}
& \mathbb{E}\left[\left|X_{t}\right|\right]<\infty, \forall t \\
& \mathbb{E}\left[X_{t} \mid \mathcal{F}_{s}\right]=X_{s}, \forall t>s
\end{aligned}
$$

(i) Yes. Using the properties of conditional expectation discussed in the lecture we have

$$
\begin{array}{ccl}
\mathbb{E}\left[3 W_{t} \mid \mathcal{F}_{s}\right] & = & \mathbb{E}\left[3\left(W_{t}-W_{s}\right)+3 W_{s} \mid \mathcal{F}_{s}\right] \\
& \begin{array}{l}
\text { linearity } \\
=
\end{array} & 3 \mathbb{E}\left[W_{t}-W_{s} \mid \mathcal{F}_{s}\right]+3 \mathbb{E}\left[W_{s} \mid \mathcal{F}_{s}\right] \\
& \stackrel{\text { independence }}{=} & 3 \mathbb{E}\left[W_{t}-W_{s}\right]+3 \mathbb{E}\left[W_{s} \mid \mathcal{F}_{s}\right] \\
& = & 3 \mathbb{E}\left[W_{s} \mid \mathcal{F}_{s}\right] \stackrel{\text { measurability }}{=} 3 W_{s} .
\end{array}
$$

To estimate the expectation we use Schwartz inequality

$$
\mathbb{E}\left[\left|W_{t}\right|\right] \leq \sqrt{\operatorname{Var}\left[W_{t}\right]}=\sqrt{t}<\infty
$$

Thus W_{t} is a martingale with respect to the natural filtration $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$.
(ii) No. Using the properties of conditional expectation discussed in the lecture we have

$$
\begin{array}{ccl}
\mathbb{E}\left[W_{t}^{2}-2 t \mid \mathcal{F}_{s}\right] & = & \mathbb{E}\left[\left(W_{t}-W_{s}+W_{s}\right)^{2}-2 t \mid \mathcal{F}_{s}\right] \\
& \stackrel{\text { linearity }}{=} & \mathbb{E}\left[\left(W_{t}-W_{s}\right)^{2} \mid \mathcal{F}_{s}\right]+\mathbb{E}\left[W_{s}^{2}-2 t \mid \mathcal{F}_{s}\right] \\
& \text { measurability } & \mathbb{E}\left[\left(W_{t}-W_{s}\right)^{2} \mid \mathcal{F}_{s}\right]+W_{s}^{2}-2 t \\
& \stackrel{\text { independence }}{=} & \mathbb{E}\left[\left(W_{t}-W_{s}\right)^{2}\right]+W_{s}^{2}-2 t \\
& = & t-s+W_{s}^{2}-2 t=W_{s}^{2}-s-t \neq W_{s}^{2}-2 s .
\end{array}
$$

Thus $W_{t}^{2}-t$ is not a martingale with respect to a natural filtration $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$.
(iii) Yes. Using the properties of conditional expectation discussed in the lecture we have

$$
\begin{array}{rll}
\mathbb{E}\left[\left.\mathrm{e}^{-\mu t-\frac{\sigma^{2} t}{2}} \mathrm{e}^{\mu t+\sigma W_{t}} \right\rvert\, \mathcal{F}_{s}\right] & = & \mathbb{E}\left[\left.\mathrm{e}^{-\frac{\sigma^{2} t}{2}+\sigma W_{t}} \right\rvert\, \mathcal{F}_{s}\right] \\
& =\mathbb{E}\left[\left.\mathrm{e}^{\sigma\left(W_{t}-W_{s}\right)-\frac{\sigma^{2} t}{2}+\sigma W_{s}} \right\rvert\, \mathcal{F}_{s}\right] \\
& \begin{array}{c}
\text { measurability } \\
=
\end{array} & \mathbb{E}\left[\mathrm{e}^{\sigma\left(W_{t}-W_{s}\right)} \mid \mathcal{F}_{s}\right] \mathrm{e}^{\sigma W_{s}-\frac{\sigma^{2}}{2}} \\
& \stackrel{\text { independence }}{=} & \mathbb{E}\left[\mathrm{e}^{\sigma\left(W_{t}-W_{s}\right)}\right] \mathrm{e}^{\sigma W_{s}-\frac{\sigma^{2} t}{2}} \\
& = & \mathbb{E}\left[\mathrm{e}^{\mathcal{N}\left(0, \sigma^{2}(t-s)\right)}\right] \mathrm{e}^{\sigma W_{s}-\frac{\sigma^{2} t}{2}} \\
& = & \mathrm{e}^{\frac{\sigma^{2}(t-s)}{2}+\sigma W_{s}-\frac{\sigma^{2} t}{2}}=\mathrm{e}^{-\frac{\sigma^{2}}{2}+\sigma W_{s}} \\
& = & \mathrm{e}^{-\mu s-\frac{\sigma^{2} s}{2}} S_{s} .
\end{array}
$$

The "discounted" Geometric Brownian Motion is a positive valued process and thus

$$
\mathbb{E}\left[\left|\mathrm{e}^{-\mu t-\frac{\sigma^{2} t}{2}} S_{t}\right|\right]=\mathrm{e}^{-\mu t-\frac{\sigma^{2} t}{2}} \mathbb{E}\left[S_{t}\right]=\mathrm{e}^{-\mu t-\frac{\sigma^{2} t}{2}} \mathrm{e}^{\mu t+\frac{\sigma^{2} t}{2}}=1<\infty .
$$

Part a, b similar to lecture and seminar.
IFoA CM2 syllabus areas 4.4.1, 4.4.2, 4.4.3, 4.5.7.

Question 2 [20 marks]. A short rate of interest is governed by the Vasicek model, i.e.

$$
d r_{t}=-a\left(r_{t}-\mu\right) d t+\sigma d B_{t}
$$

where B_{t} is a standard Brownian motion and $a, \mu>0$ are constants.
You are given that r_{t} has the following explicit expression:

$$
r_{t}=\mu+\left(r_{0}-\mu\right) e^{-a t}+\sigma \int_{0}^{t} e^{a(s-t)} d B_{s}
$$

(a) Find the probability $\mathbb{P}\left[r_{t}<0\right]$ when $t \rightarrow \infty$. Please show the detailed calculation, rather than use the result on relevant slides directly.

Solution:

$$
\begin{aligned}
& d B_{s} \sim N(0, d s) \\
\Rightarrow & \sigma e^{a(s-t)} d B_{s} \sim N\left(0, \sigma^{2} e^{2 a(s-t)} d s\right) \\
\Rightarrow & \int_{0}^{t} \sigma e^{a(s-t)} d B_{s} \sim N\left(0, \int_{0}^{t} \sigma^{2} e^{2 a(s-t)} d s\right)
\end{aligned}
$$

The distribution of r_{t} is given by:

$$
r_{t} \sim N\left(\mu+e^{-a t}\left(r_{0}-b\right), \int_{0}^{t} \sigma^{2} e^{2 a(s-t)} d s\right)=N\left(\mu+e^{-a t}\left(r_{0}-\mu\right), \frac{\sigma^{2}}{2 a}\left(1-e^{-2 a t}\right)\right)
$$

As $t \rightarrow \infty, e^{-2 a t} \rightarrow 0$, so we get:

$$
r_{t} \sim N\left(\mu, \frac{\sigma^{2}}{2 a}\right)
$$

Therefore,

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left(r_{t}<0\right)=\Phi\left(\frac{-\mu \sqrt{2 a}}{|\sigma|}\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\frac{-\mu \sqrt{2 a}}{|\sigma|}} e^{-\frac{x^{2}}{2}} d x .
$$

(b) State what happens to $\mathbb{P}\left[r_{t}<0\right]$ as $|\sigma| \rightarrow 0$.

Solution:

When $|\sigma| \rightarrow 0$,

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left(r_{t}<0\right)=\Phi(-\infty)=0
$$

i.e. this probability decreases to 0 as $|\sigma| \rightarrow 0$
(c) Critically evaluate the Vasicek model.

Solution:

According to the result of (b), the unfortunate property of this model is that r_{t} can be negative.
This is unrealistic because interest rate rarely become negative.
However, the probability of such an event is small when σ is small.
The most important good feature of this model is the "mean reversion" property of r_{t} : the value r_{t} will eventually return to its long-term mean μ. Vasicek model is a one-factor model, and there are some short-comings:

- Single factor short-rate models mean that all maturities behave in the same way - there is no independence.
- There is little consistency in valuation between the models.
- They are difficult to calibrate.

Part a, b from lectures, c similar to seminar.
IFoA CM2 syllabus areas 4.5.2, 4.5.6, 4.5.7.

Question 3 [20 marks]. The company F. Bancroft \& Sons issued zero-coupon bonds with expiration time of 5 years today, and the total nominal value of $£ 1$ million. The total value of the company now stands at $£ 1.2$ million. A continuously compounded interest rate is 3% per annum. The total value of the company follows the Geometric Brownian motion with parameters $\mu=0.3$ and $\sigma=0.1$.
(a) Give three examples of credit risk models. Which of them are structural model(s)?
(b) Under the Merton model, find the current value of the shareholders' equity.
(c) In 2 years time, the company's value drops by 10%. What is the probability of F. Bancroft \& Sons's default on its obligation to bondholders?

Solution:

(a) Three examples: The Merton model, two-state model for credit ratings, and The JLT model. The Merton model is the simplest example of a structural model.
(b) According to the Merton model, the shareholders can be treated as having a European Call option on the assets of the company with strike price $L_{0}=£ 1$ million and maturity $T=5$ years. Thus the value of shareholders' equity is equal to

$$
E_{0}=F_{0} \Phi(\omega)-L_{0} e^{-r T} \Phi(\omega-\sigma \sqrt{T}) .
$$

First we calculate ω by using the formula

$$
\begin{aligned}
\omega & =\frac{\log \frac{F_{0}}{L_{0}}+r T}{\sigma \sqrt{T}}+\frac{1}{2} \sigma \sqrt{T}=1.5980, \\
\omega-\sigma \sqrt{T} & =\frac{\log \frac{F_{0}}{L_{0}}+r T}{\sigma \sqrt{T}}-\frac{1}{2} \sigma \sqrt{T}=1.3744 .
\end{aligned}
$$

Plugging the numbers into the above formula gives

$$
E_{0}=1.2 \times 0.944979-0.8481 \times 0.915341=£ 0.3577 \text { millions } .
$$

(c) In two years the value of the company drops to $F_{2}=F_{0} \times 0.9=£ 1.08$ millions. The company's value, under the assumptions of the Black-Scholes theory, follows the Geometric Brownian Motion.

$$
F_{2+t}=F_{2} e^{\mu t+\sigma W_{t}} .
$$

The company would default if the value of the company drops below the repayment value L_{0}.

$$
\begin{aligned}
\mathbb{P}(\text { default }) & =\mathbb{P}\left(F_{5}<L_{0}\right)=\mathbb{P}\left(F_{2} e^{3 \mu+\sigma W_{3}}<L_{0}\right)=\mathbb{P}\left(W_{3}<\frac{\ln \frac{L_{0}}{F_{2}}-3 \mu}{\sigma}\right) \\
& =\Phi\left(\frac{\ln \frac{L_{0}}{F_{2}}-3 \mu}{\sigma \sqrt{T}}\right)=\Phi(-4.5879)=2.2391 \times 10^{-6} .
\end{aligned}
$$

Part a from lectures, b, c similar to seminar.
IFoA CM2 syllabus areas 4.6.2, 4.6.3.

Question 4 [30 marks].

The price of a share $S(t)$ evolves according to a Geometric Brownian Motion with parameters S, μ, σ, i.e. $S(t)=S e^{\mu t+\sigma W(t)}$. The continuously compounded interest rate is r.
An exotic derivative on this share has the payoff function

$$
R(T)=\frac{1}{T} \int_{0}^{T} S(t)(S(T)-c) d t
$$

Where c is a constant. The payoff time is T.
(a) Show that $\mathbb{E}\left(e^{a W(t)+b W(t+s)}\right)=e^{\frac{(a+b)^{2}}{2} t+\frac{b^{2}}{2} s}$, where $t>0$ and $s>0$.

Solution:

Denote $Y=a W(t)+b W(t+s)$. Notice that

$$
Y=(a+b) W(t)+b(W(t+s)-W(t))
$$

So, Y is a sum of 2 independent random variables and hence
$e^{Y}=e^{(a+b) W(t)} \times e^{b(W(t+s)-W(t))}$ is a product of two independent random variables. It follows that
$\mathbb{E}\left(e^{a W(t)+b W(t+s)}\right)=\mathbb{E}\left[e^{(a+b) W(t)} \times e^{b(W(t+s)-W(t))}\right]=\mathbb{E}\left[e^{(a+b) W(t)}\right] \times \mathbb{E}\left[e^{b(W(t+s)-W(t))}\right]$.
We know that $\mathbb{E}\left(e^{\sigma W(t)}\right)=e^{\frac{\sigma}{}_{2}^{2} t}$. Since $W(t+s)-W(t) \sim \mathcal{N}(0, s)$ and
therefore

$$
\mathbb{E}\left[e^{b(W(t+s)-W(t))}\right]=\mathbb{E}\left[e^{b W(s)}\right]=e^{\frac{b^{2}}{2} s} .
$$

Hence

$$
\begin{equation*}
\mathbb{E}\left(e^{a W(t)+b W(t+s)}\right)=e^{\frac{(a+b)^{2}}{2} t} \times e^{\frac{b^{2}}{2} s}=e^{\frac{(a+b)^{2}}{2} t+\frac{b}{2}_{2}^{2} s} . \tag{1}
\end{equation*}
$$

(b) Use the result obtained in (a), calculate the no-arbitrage price of this exotic derivative.

Solution:

By Theorem 5.2,
$C=\mathrm{e}^{-r T} \tilde{\mathbb{E}}\left(\frac{1}{T} \int_{0}^{T} S(t)(S(T)-c) \mathrm{d} t\right)=\frac{\mathrm{e}^{-r T}}{T} \tilde{\mathbb{E}}\left(\int_{0}^{T} S(t) S(T) \mathrm{d} t-c \int_{0}^{T} S(t) \mathrm{d} t\right)$.
To compute this expectation over the risk-neutral probability, we have to turn $\tilde{\mathbb{E}}$ into \mathbb{E} by replacing $S(t)$ and $S(T)$ by $\tilde{S}(t)$ and $\tilde{S}(T)$. Thus, by Theorem 5.3,

$$
\tilde{\mathbb{E}}\left(\int_{0}^{T} S(t) S(T) \mathrm{d} t\right)=\mathbb{E}\left(\int_{0}^{T} \tilde{S}(t) \tilde{S}(T) \mathrm{d} t\right) .
$$

It is possible to change the order of the two operations (Slide 37, Week 3-4):

$$
\mathbb{E}\left(\int_{0}^{T} \tilde{S}(t) \tilde{S}(T) \mathrm{d} t\right)=\int_{0}^{T} \mathbb{E}(\tilde{S}(t) \tilde{S}(T)) \mathrm{d} t
$$

In words, rather than first computing the integral and then the expectation, we can first compute the expectation and after that compute the integral.

We have that

$$
\tilde{S}(t) \tilde{S}(T)=S \mathrm{e}^{\tilde{\mu} t+\sigma W(t)} \times S \mathrm{e}^{\tilde{\mu} T+\sigma W(T)}=S^{2} \mathrm{e}^{\tilde{\mu}(t+T)+\sigma W(t)+\sigma W(T)}
$$

and hence

$$
\mathbb{E}(\tilde{S}(t) \tilde{S}(T))=S^{2} \mathrm{e}^{\tilde{\mu}(t+T)} \mathbb{E}\left(\mathrm{e}^{\sigma(W(t)+W(T))}\right)
$$

Using the result stated in (a) with $a=b=\sigma$ and $s=T-t$ we obtain

$$
\mathbb{E}(\tilde{S}(t) \tilde{S}(T))=S^{2} \mathrm{e}^{\tilde{\mu}(t+T)+2 \sigma^{2} t+\frac{\sigma^{2}}{2}(T-t)}=S^{2} \mathrm{e}^{\tilde{\mu}(t+T)+1.5 \sigma^{2} t+\frac{\sigma^{2}}{2} T}
$$

Since $\tilde{\mu}=r-\frac{\sigma^{2}}{2}$, we have

$$
\mathbb{E}(\tilde{S}(t) \tilde{S}(T))=S^{2} \mathrm{e}^{r T+\left(r+\sigma^{2}\right) t}
$$

Integrating the last expression, we obtain

$$
\mathbb{E}\left(\int_{0}^{T} \tilde{S}(t) \tilde{S}(T) \mathrm{d} t\right)=S^{2} \mathrm{e}^{r T} \int_{0}^{T} \mathrm{e}^{\left(r+\sigma^{2}\right) t} \mathrm{~d} t=S^{2} \mathrm{e}^{r T} \frac{1}{r+\sigma^{2}}\left(\mathrm{e}^{\left(r+\sigma^{2}\right) T}-1\right) .
$$

Similarly, for the second half of (2):

$$
\tilde{\mathbb{E}}\left(c \int_{0}^{T} S(t) \mathrm{d} t\right)=c \mathbb{E}\left(\int_{0}^{T} \tilde{S}(t) \mathrm{d} t\right) .
$$

Since

$$
\tilde{S}(t)=S \mathrm{e}^{\tilde{\mu} t+\sigma W(t)},
$$

we have

$$
\mathbb{E}(\tilde{S}(t))=S \mathrm{e}^{\left(\tilde{\mu}+\frac{1}{2} \sigma^{2}\right) t}
$$

so

$$
\mathbb{E}\left(\int_{0}^{T} \tilde{S}(t) \mathrm{d} t\right)=\mathbb{E}\left(\int_{0}^{T} S \mathrm{e}^{\left(\tilde{\mu}+\frac{1}{2} \sigma^{2}\right) t} \mathrm{~d} t\right)=\frac{S}{r}\left(e^{r-\frac{1}{2} \sigma^{2}+\frac{1}{2} \sigma^{2} T}-1\right) .
$$

Finally we obtain from (2):

$$
C=\frac{S^{2}}{\left(r+\sigma^{2}\right) T}\left(\mathrm{e}^{\left(r+\sigma^{2}\right) T}-1\right)-\frac{c S e^{-r T}}{r T}\left(e^{r-\frac{1}{2} \sigma^{2}+\frac{1}{2} \sigma^{2} T}-1\right) .
$$

(C) Queen Mary University of London (2023)
(c) Consider another exotic call option on the same share with expiration time t.
Its strike price K depends on $S(s)$ and $W(s)$, where $s<t$, i.e.

$$
K=e^{-\sigma W(s)} \times(S(s))^{2} .
$$

Denote by \tilde{C} the no-arbitrage price of this option.
Denote by $C(S, T, K, \sigma, r)$ the Black-Scholes price of the standard European call option.

Using the properties of the Wiener process, write down the expression for the price \tilde{C} in terms of the expectation of the risk-neutral process $\tilde{S}(t)$ and $\tilde{\mu}$, and show $\tilde{C}=C\left(S^{\prime}, T^{\prime}, K^{\prime}, \sigma^{\prime}, r^{\prime}\right)$. (Please write down the explicit expression of $\left.S^{\prime}, T^{\prime}, K^{\prime}, \sigma^{\prime}, r^{\prime}\right)$.

Solution:

In our case, by the definition of our call option, the expiration time $T=t$ and the payoff function G depends on 2 variables, $S(s)$ and $S(t)$, as follows:

$$
G\left((S(s), S(t))=(S(t)-K)^{+}=\left(S(t)-e^{-\sigma W(s)} \times(S(s))^{2}\right)^{+} .\right.
$$

The price \tilde{C} is

$$
\begin{aligned}
\tilde{C} & =\mathrm{e}^{-r t} \mathbb{E}\left(\tilde{S}(t)-e^{-\sigma W(s)} \times(\tilde{S}(s))^{2}\right)^{+}=\mathrm{e}^{-r t} \mathbb{E}\left(S e^{\tilde{\mu} t+\sigma W(t)}-e^{-\sigma W(s)} S \mathrm{e}^{2 \tilde{\mu} s+2 \sigma W(s)}\right)^{+} \\
& =\mathrm{e}^{-r t} \mathbb{E}\left[\mathrm{e}^{\tilde{\mu} s+\sigma W(s)}\left(S e^{\tilde{\mu}(t-s)+\sigma(W(t)-W(s))}-S e^{\tilde{\tilde{s}} s}\right)^{+}\right] .
\end{aligned}
$$

Since the random variables $W(t)-W(s)$ and $W(s)$ are independent (as increments of the Wiener process), also the random variables $\mathrm{e}^{\tilde{\mu} s+\sigma W(s)}$ and $\left(S e^{\tilde{\mu}(t-s)+\sigma(W(t)-W(s))}-S e^{\tilde{\mu} s}\right)^{+}$are independent and therefore the expectation of their products splits into the product of their expectations:

$$
\begin{equation*}
\tilde{C}=\mathrm{e}^{-r t} \mathbb{E}\left(\mathrm{e}^{\tilde{\mu} s+\sigma W(s)}\right) \times \mathbb{E}\left(S e^{\tilde{\mu}(t-s)+\sigma(W(t)-W(s))}-S e^{\tilde{\mu} s}\right)^{+} . \tag{3}
\end{equation*}
$$

We know that $\mathbb{E}\left(\mathrm{e}^{\tilde{\mu} s+\sigma W(s)}\right)=\mathrm{e}^{r s}$. Also, by the definition of the Wiener process, $W(t)-W(s)$ has the same distribution as $W(t-s)$ and so

$$
\mathbb{E}\left(S e^{\tilde{\mu}(t-s)+\sigma(W(t)-W(s))}-S e^{\tilde{\mu} s}\right)^{+}=\mathbb{E}\left(S e^{\tilde{\mu}(t-s)+\sigma W(t-s))}-S e^{\tilde{\mu} s}\right)^{+} .
$$

Plugging the last two relation into (3), we obtain

$$
\tilde{C}=\mathrm{e}^{-r(t-s)} \mathbb{E}\left(S e^{\tilde{\mu}(t-s)+\sigma W(t-s)}-S e^{\tilde{\mu} s}\right)^{+}=C\left(S, t-s, S e^{\tilde{\mu} s}, \sigma, r\right) .
$$

Part a similar to seminar, Part b, c application of lecture material.
IFoA CM2 syllabus areas 4.4.2, 6.1.8, 6.1.9.

End of Paper.
(C) Queen Mary University of London (2023)

