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Question 1 [30 marks].
Let W, be a standard Brownian Motion.

(a) The simplest version of the Ornstein-Uhlenbeck process X; is defined by

X, =e 'W,, for some constant § > 0.

(i) Does this process have independent increments?

(ii) Is X; a Brownian Motion?

(iv) Compute p,, = E[(X;)™] for all integer m > 0.

w

w

)
)
(iii) What is the distribution of the increment X; — X, for t > s?
)
)

(v) Compute Cov (X, Xy).

Solution

(i) Increments X, , — Xy, can be expressed in terms of the Brownian

2

motion as follows:

Xt — Xti = eiti7L1 Wti+1 - eftthi

= e (W, W,,) + (e7'+ — e )W,

141 - 7 7

i+1

It is clear that the first term in this expression is independent from all
previous history of the Brownian motion (see properties of a Brownian
motion). However, the second one is not. To formally prove that the
increments are not independent, let us take three different times

t < s < r and calculate the covariance Cov [ X, — X, X, — X;].

Cov [X, — X5, Xs — Xi] = Covl[X,, X+ Cov [X, X{]
—Cov [X,, X;] — Cov [ X, X{]
= e "*Cov [W,, W] + e ""*Cov [W;, W,]
—e """ Cov [Wy, W,] — e *Var [W,]
= e Ts+e T t—e Tt —e %5

= (e77—e*) (se®—te™") > 0.
(i) Tt follows from the above that X; is not a Brownian Motion.
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(iii) An increment X; — X, can be written as a sum of two independent
Gaussian random variables. Indeed

Xy —Xg=e "W, = W]+ (e7" —e™®) [W, — Wy].
Thus, X; — X, is a Gaussian random variable with mean zero and
variance
Var[X; — X, =e ™ (t—s)+ (e — 6_5)2 s=te 2 4 se7 % — 25717,
(iv) For the m-th moment we use the formula derived in lectures:

_ B [e=mtyym] — 0, if m is odd,
o =BT WE] =3 ooy

soprt’,  if m = 2p (is even).

(v) Finally, for the covariance (which in fact has been computed above)
one has:

Cov [ X, X,] = e " *Cov [W;, W] = e " *minl(t, s).

(b) Consider a Brownian Motion B; = ut + oW;, where W, is the standard
Wiener Process and p, and o are the parameters of the Brownian Motion.
We also define the related Geometric Brownian S; by S, = e?.

Are the following processes martingale or not, with respect to the natural
filtration, i.e. the one associated with W,;?

(i) Z =3Wy;
(i) Z = W2 — 2t;
(ili) 7 = e M55,

Solution For the process X; to be a martingale with respect to filtration
Fs it is sufficient to satisfy

E[X|F.] = X.,Vt > s.

(i) Yes. Using the properties of conditional expectation discussed in the
lecture we have

EBWIE] = EB(W—W,)+3W.|F]
linearity g (Wi — W| Fs] + 3E [Wy| F]
independence 3K [Wt — Ws] + 3E [Ws|]: S]

measurability

= 3E [W,|F,] "L gy,
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To estimate the expectation we use Schwartz inequality

E[|W,|] < +/Var [W,] = Vt < .

Thus W, is a martingale with respect to the natural filtration {F;},.,.

(ii) No. Using the properties of conditional expectation discussed in the
lecture we have

BV -2F] = E[im W W -]
B (W, — W) + B [W2 — 26| F]
measurability E [ (W; — Ws)2| fsj| 4 Wsz _ 9
independence E [ (Wt - Ws)z} i Wsz _ 9t
= t—s+W2—-2t=W2—5—t+#W?—2s.

Thus W72 — t is not a martingale with respect to a natural filtration
{Ft}iso-

(iii) Yes. Using the properties of conditional expectation discussed in the
lecture we have

ot _o%t
E|e-Setto W] = BTN E]
_ o —-W, f“—t+ch
= E [e ) | Fs
measu;abz ity E [ea ] eUWS_UT
independence _ o2t
= E [e" } Ws=5%
= E [eN }
2(t s) We— t o' s %%
— e +o - e +oWs

The ”discounted” Geometric Brownian Motion is a positive valued
process and thus

02t

at o o2t
CFEES]=e M T e =1 < 00,

B [l sf] <o

Part a, b similar to lecture and seminar.
[FoA CM2 syllabus areas 4.4.1, 4.4.2, 4.4.3, 4.5.7.
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Question 2 [20 marks]. A short rate of interest is governed by the Vasicek
model, i.e.

dry = —a(ry — p)dt + odBy

where B, is a standard Brownian motion and a, u > 0 are constants.

You are given that r; has the following explicit expression:

t
re=pu+ (ro—p)e ™+ 0/ e®0dB,.
0

(a) Find the probability P[r; < 0] when ¢t — oco. Please show the detailed
calculation , rather than use the result on relevant slides directly. [10]

Solution:

dB, ~ N(0, ds)
=0e* V4B, ~ N(0, 0%e2Vds)

¢ t
:>/ oe®CDdB, ~ N(O,/ o?e?5= s)
0 0

The distribution of r, is given by:

t 2
Ty~ N(p+ e_at(ro — b),/ 0262a(s—t)d8) = N(u+ €_at(7’0 — ), ;T_(l _ 6—2at))
0 a

—2at

Ast — o0, € — 0, so we get:

0.2

~ N(p, —
Tt (M7 2a)
Therefore,
—pv2a
- 2 1 lo] z2
lim P(r, < 0) = @ [ V20 ) = / e~ du.
t—00 ’0" \ 27 oo
(b) State what happens to P[r; < 0] as |o| — 0. (5]
Solution:
When |o| — 0,

lim P(r; < 0) = ® (—oc0) = 0,

t—o00

i.e. this probability decreases to 0 as |o| — 0

(© Queen Mary University of London (2023) Continue to next page
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(c) Critically evaluate the Vasicek model. (5]

Solution:

According to the result of (b), the unfortunate property of this model is
that r; can be negative.

This is unrealistic because interest rate rarely become negative.

However, the probability of such an event is small when o is small.

The most important good feature of this model is the "mean reversion”
property of r;: the value r; will eventually return to its long-term mean .
Vasicek model is a one-factor model, and there are some short-comings:

e Single factor short-rate models mean that all maturities behave in the
same way - there is no independence.

e There is little consistency in valuation between the models.

e They are difficult to calibrate.

Part a, b from lectures, ¢ similar to seminar.
[FoA CM2 syllabus areas 4.5.2, 4.5.6, 4.5.7.

Question 3 [20 marks].  The company F. Bancroft & Sons issued
zero-coupon bonds with expiration time of 5 years today, and the total nominal
value of £1 million. The total value of the company now stands at £1.2 million.
A continuously compounded interest rate is 3% per annum. The total value of
the company follows the Geometric Brownian motion with parameters p = 0.3
and o = 0.1.

(a) Give three examples of credit risk models. Which of them are structural

model(s)? [4]
(b) Under the Merton model, find the current value of the shareholders’
equity. 8]
(c) In 2 years time, the company’s value drops by 10%. What is the probability
of F. Bancroft & Sons’s default on its obligation to bondholders? 8]
Solution:

(a) Three examples: The Merton model, two-state model for credit ratings, and
The JLT model. The Merton model is the simplest example of a structural
model.

(© Queen Mary University of London (2023) Continue to next page
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(b) According to the Merton model, the shareholders can be treated as having
a European Call option on the assets of the company with strike price
Lo = £1 million and maturity 7" = 5 years. Thus the value of shareholders’
equity is equal to

By = Fyd (w) — Loe " T® (w - a\/T) .

First we calculate w by using the formula

log% +rT 1
w o= — "~ 4 VT =1.5980,
o T 2
log £& 4+ »T 1
w—oVT = 8 Ly — ZoVT = 1.3744.

ovT 2

Plugging the numbers into the above formula gives

Ey = 1.2 x0.944979 — 0.8481 x 0.915341 = £ 0.3577 millions.

(¢) In two years the value of the company drops to Fy, = Fy x 0.9 = £1.08
millions. The company’s value, under the assumptions of the Black-Scholes

theory, follows the Geometric Brownian Motion.
F2+t — F2e'LLt+UWt-

The company would default if the value of the company drops below the
repayment value Ly.

g

In % —3u
P (default) = P(F5 < Lg) =P (Fpe® ™™™ < L) =P [ Wy < —2——

In Lo —
= & L _—— ) =& (—4.5879) = 2.2391 x 107°.

Part a from lectures, b, ¢ similar to seminar.
[FoA CM2 syllabus areas 4.6.2, 4.6.3.
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Question 4 [30 marks].

The price of a share S(t) evolves according to a Geometric Brownian Motion with
parameters S, p, o, i.e. S(t) = Set*T*W®  The continuously compounded
interest rate is 7.

An exotic derivative on this share has the payoff function

1 /7
R(T) = —/ S(t)(S(T) — c)dt.
T Jo
Where ¢ is a constant. The payoff time is T'.
a 2
(a) Show that E (e®W(®O+0W(i+s)) — e % t+%s, where t > 0 and s > 0. [10]

Solution:
Denote Y = aW(t) + bW (t + s). Notice that

Y= (a+b)W(t)+b(W(t+s)—W(t)).

So, Y is a sum of 2 independent random variables and hence
eV = elatOW(t) 5 bW (t+s)=W(t) ig 5 product of two independent random
variables. It follows that

E (eaW(t)erW(tJrs)) _E [e(aer)W(t) y eb(W(tJrs)fW(t))} _E [e(aer)W(t)] <F [eb(W(tJrs)fW(t))} .

We know that E (e”"®)) = e, Since W(t+s)—W(t) ~N(0,s) and
therefore

Hence

(a+b)? [ (atb)?, | 52
E (eaW(t)+bW(t+s)) —e 2 lxezs—¢ 3 T35 (1)

(b) Use the result obtained in (a), calculate the no-arbitrage price of this exotic
derivative. [10]
Solution:

By Theorem 5.2,

C =R (% /0 " S()(S(T) - c)dt) _ e;TIE ( /0 U S(0S(T)at — ¢ /O ' S(t)dt) |

To compute this expectation over the risk-neutral probability, we have to
turn E into E by replacing S(¢) and S(7T') by S(t) and S(T"). Thus, by

Theorem 5.3,
E </OT S(t)S(T)dt) =E (/OT 5(t)§(T)dt> .

(© Queen Mary University of London (2023) Continue to next page
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It is possible to change the order of the two operations (Slide 37, Week 3-4):

E < /0 TS(t)S‘(T)dt) - /O B (50)8(T)) at.

In words, rather than first computing the integral and then the expectation,
we can first compute the expectation and after that compute the integral.

We have that

g(t)g(T) — Seﬂt+ch(t) x SeﬂTJraW(T) — SZGQ(t+T)+UW(t)+UW(T)

and hence

E (S(t)S(T)> — S2ATIE (o7 WOHW(T))
Using the result stated in (a) with @ = b = ¢ and s = T — t we obtain
E (S(t)g’(T)> = SQeﬁ(HT)“UQH%(T—t) — SQeﬂ(t+T)+1.502t+§T'
Since i =r — %2, we have
E (S(t)S(T)> _ §2erTH(r+o?)t

Integrating the last expression, we obtain

T T
E </ g(t)g(T)dt) — SQerT/ e(r+02)tdt _ SQGTT;(G(TJH#)T . 1)
0

0 r 4 o2

Similarly, for the second half of (2):

E <c /OT S(t)dt) = cE (/OT S(t)dt> .

Since
g(t) — SeﬂtJraW(t)’
we have
E (5(1)) = seti+bo,
SO

T T
E (/ S(t)dt) =E (/ Se(’l+§02)tdt) _5 <6r—%02+%o—2T _ 1) '
0 0 r

Finally we obtain from (2):

2 —rT
C= s f 2)T(e<r+<’2>T —1) - CseT (er—%ff“%” - 1) .
r o T
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(c¢) Consider another exotic call option on the same share with expiration time
t.
Its strike price K depends on S(s) and W (s), where s < t, i.e.

K =e W x (5(s))%

Denote by C the no-arbitrage price of this option.
Denote by C(S,T, K, o,r) the Black-Scholes price of the standard European
call option.

Using the properties of the Wiener process, write down the expression for
the price C in terms of the expectation of the risk-neutral process S (t) and
fi, and show C' = C(S",T",K', o', r"). (Please write down the explicit
expression of S, T", K' o' r').

Solution:

In our case, by the definition of our call option, the expiration time T =t
and the payoff function G depends on 2 variables, S(s) and S(t), as follows:

G((S(5),5(t) = (S(t) = K) = (S(t) = e™™ x (S(5))*)".

The price C is

Cv _ e—rtE(S«(t) _ e—aW(s) > (S«(S)>2)+ — e—rtE<Se/2t+aW(t) . e—aW(s)SeQ;ls—i-ZaW(s))-i-

_ e—rtE [eﬁs—i-ch(s)(Seﬂ(t—s)+o(W(t)—W(s)) . Seﬁs)—&-} )

Since the random variables W (t) — W (s) and W (s) are independent (as
increments of the Wiener process), also the random variables e#**°W(*) and
(Seflt=s)+o(W(t)=W(s)) _ Gelis)* are independent and therefore the

expectation of their products splits into the product of their expectations:
év — e "R (e/lerUW(s)) % E(Seﬂ(tfs)Jra(W(t)fW(s)) _ Seﬂs)+. (3)

We know that E (ef‘s“’W(s)) = ¢e". Also, by the definition of the Wiener
process, W (t) — W (s) has the same distribution as W (t — s) and so

B(Set-1+oWO-W(s) _ gyt _ J(geflt-1+aW (=) _ Giisy+
Plugging the last two relation into (3), we obtain

C = e TEIE (St Wt=s) _ geisy+t — (S, t — 5,5¢" 0, 71).

Part a similar to seminar, Part b, ¢ application of lecture material.
[FoA CM2 syllabus areas 4.4.2, 6.1.8, 6.1.9.
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End of Paper.
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