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Question 1 [14 marks]. A six-sided die has an unknown number of faces marked with a 

six. Let k be this unknown number, which we would like to estimate. Our prior distribution 

for k is

P(k = j) =

5/8, j = 1 

1/16, j = 0,2,3,4,5,6.

When the die is thrown each face has an equal chance of showing. The observed data is that 

the die was thrown twice, and it showed a six exactly once.

(a) Write down the likelihood for the observed data. What is the maximum likelihood 

estimate for k? [4]

(b) Derive the normalized posterior distribution for k. What is the posterior mean for k? [6]

(c) Find the posterior predictive probability that if the die is thrown again, it will not show a 

six. [4]

Question 2 [24 marks].
Suppose that we have data y = (y1, . . . ,yn). Each data-point yi is assumed to be generated by a 

distribution with the following probability density function:

p(yi | θ) =
θ2

y3
i

exp
(
−
θ

yi

)
, yi ≥ 0.

The unknown parameter is θ, with θ > 0.

(a) Write down the likelihood for θ given y. Find an expression for the maximum likelihood 

estimate (MLE) θ̂. [5]

(b) A Gamma(α, β) distribution is chosen as the prior distribution for θ. Derive the resulting 

posterior distribution for θ given y. [6]

(c) We would like to choose the gamma prior distribution parameters so that α = 1, and

P(θ > 50+B) = 0.05,

where B is the second-to-last digit of your ID number. Find the value of β that is needed. [5]

(d) The data are y = (4,4,8,8,4,C+3), where C is the last digit of your ID number, with
n = 6.

(i) What is the MLE θ̂? [3]

(ii) Using the prior distribution from part (c), what are the parameters of the posterior 

distribution for θ? [3]

(iii) What are the posterior mean and standard deviation for θ? [2]
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Question 3 [20 marks].
We want to estimate a single unknown parameter θ in a certain model. Assume that in R we 

have defined a function log post to calculate the log of the unnormalized posterior density as 

a function of θ. This function and the data y being analysed are not shown in the code extract 

below. The posterior density is p(θ | y). Consider the following R code:
nm = 10000

theta = vector(length=nm)

s = 0.4

theta0 = 2

log post0 = log post(theta0)

for(i in 1:nm){

theta1 = theta0 + s*rnorm(1)

log post1 = log post(theta1)

if(log(runif(1)) < log post1-log post0){

theta0 = theta1

log post0 = log post1

}

theta[i] = theta0

}

quantile(theta, probs=c(0.5, 0.025, 0.975))

An explanation in words is all that is needed for this question.

(a) What is the name of the algorithm that the code is carrying out? [2]

(b) Explain what the command theta1 = theta0 + s*rnorm(1) is doing in the context 

of the algorithm. [4]

(c) When the code has run, what will the vector theta contain? [3]

(d) In statistical terms, what will the last line of code output? [5]

Suppose that the data y was a sample from an exponential distribution with parameter θ. The 

code below follows from the preceding code.
v = rexp(length(theta), rate=theta)

mean(v>5 & v<10)

(e) When this code has run, what will v contain? [3]

(f) What will the last line of code output (in statistical terms)? [3]

© Queen Mary University of London (2022) Continue to next page



MTH6102 (2022) Page 4

Question 4 [26 marks].
The observed data is y = (y1, . . . ,yn), a sample from a negative binomial distribution with 

parameters q and r, where r is assumed to be known.
The prior distribution for q is Beta(α, β). Suppose that y1 = · · · = yn = 0. Take n = 10+A, 

where A is the third-to-last digit of your ID number; α = 5+B,where B is the second-to-last 

digit of your ID number; r = 3; and β = 1.

(a) What is the posterior probability density function for q? [5]

(b) Find an expression for the quantile function for this posterior distribution, and hence 

find a 95% credible interval for q. [6]

(c) Let x be a new data-point generated by the same negative binomial distribution with 

parameters q and r. Find P(x = 0 | y), the posterior predictive probability that x is 0. [5]

Suppose now that we want to compare two models. Model M1 is the model and prior 

distribution described above. Model M2 assumes that the data follow a negative binomial 

distribution with q known to be q0 = 0.9.

(d) Find the Bayes factor B12 for comparing the two models. [6]

(e) We assign prior probabilities of 1/3 that M1 is the true model, and 2/3 that M2 is the 

true model. Find the posterior probability that M1 is the true model. [4]
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Question 5 [16 marks].
We have observed data

y = {yi j : i = 1, . . . ,n, j = 1, . . . ,mi}.

Each yi j is the number of times a certain type of machine needs to be repaired during length of 

time Ti j, where j = 1, . . . ,mi are the machines in factory i, for i = 1, . . . ,n, with n ≥ 2.
A hierarchical model is used to model the data. We assume that

yi j ∼ Poisson(Ti jµi). 

µi is the repair rate for factory i, which varies between factories according to a gamma 

distribution
µi ∼ Gamma(α, β), i = 1, . . . ,n.

The parameters α and β are given prior distributions, p(α) and p(β).
Suppose that we have generated a sample of size M from the joint posterior distribution
p(µ1, . . . , µn, α, β | y).

(a) Explain how to estimate the following using the joint posterior sample:

(i) The posterior mean of α.

(ii) The posterior median of ν =
α

β
.

(iii) A 95% equal tail credible interval for ν.
[6]

(b) Explain how to generate a sample from the posterior predictive distribution of the 

number of repairs during time U for a machine not in our dataset, in each of the 

following two cases:

(i) If the factory containing this machine is in our dataset. [4]

(ii) If the factory is not in our dataset. Also explain how to estimate the posterior 

predictive probability that such a machine will not need any repairs during time U. [6]

End of Paper – An appendix of 1 page follows.
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Appendix: common distributions
For each distribution, x is the random quantity and the other symbols are parameters.

Discrete distributions

Distribution Probability 

mass function 

Range of parameters 

and variates 

Mean Variance 

Binomial
(
n 

x

)
qx(1−q)n−x 0 ≤ q ≤ 1

x = 0,1, . . . ,n 

nq nq(1−q) 

Poisson
λxe−λ

x!
λ > 0
x = 0,1,2, . . . λ λ

Geometric q(1−q)x 0 < q ≤ 1
x = 0,1,2, . . .

(1−q)
q

(1−q)
q2

Negative 

binomial

(
r+ x−1

x

)
qr(1−q)x 0 < q ≤ 1, r > 0

x = 0,1,2, . . .
r(1−q)

q 

r(1−q)
q2

Continuous distributions

Distribution Probability 

density function 

Range of parameters 

and variates 

Mean Variance 

Uniform 

1
b−a

−∞ < a < b <∞
a < x < b 

a+b
2 

(b−a)2

12 

Normal N(µ, σ2) 

1
√

2πσ2
exp

(
−

(x−µ)2

2σ2

)
−∞ < µ <∞, σ > 0
−∞ < x <∞ µ σ2

The 95th and 97.5th percentiles of the standard N(0,1) distribution are 1.64 and 1.96, respectively. 

Exponential λe−λx λ > 0
x > 0 

1
λ

1
λ2

Gamma
βαxα−1e−βx

Γ(α)
α > 0, β > 0
x > 0

α

β 

α

β2

Beta
Γ(α+β)
Γ(α)Γ(β)

xα−1(1− x)β−1 α > 0, β > 0 

0 < x < 1
α

α+β 

αβ

(α+β)2(α+β+1)

End of Appendix.
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