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1 Dynamical systems on the line R

1.1 Introduction

These notes form an introduction to the qualitative theory of ordinary differential equa-
tions (ODEs). The simplest ODEs are equations of variables x, t, and the various deriva-
tives of x with respect to t, e.g. (

dx
dt

)2

+ x = sin(t). (1.1)

where x(t) is a function of time t.
The order of an ODE is the order of the highest derivative appearing in the equation.
Using ẋ = dx

dt and ẍ = d2x
dt2 , consider

(i) aẍ + bẋ + cx = 0, a, b, c constants.

(ii) ẋ = sinh(x)

(iii) ẋ1 = x2 and ẋ2 = − b
a x2 − c

a x1.

Such equations are said to describe a dynamical system, as they determine how a vari-
able x, or several variables x, y . . . change with time t. A system or equation that does
not include any terms explicitly in the variable t other than as derivatives of x is called
autonomous otherwise the system is said to be non-autonomous.

Note that (i) and (ii) are ODEs in a single dependent variable x = x(t) which de-
pends on the independent variable t, whereas (iii) is a system of two dependent variables
x1 = x1(t), x2 = x2(t) with independent variable t. Note that (i) and (iii) are different for-
mulations of the same ODE. Why? Make the substitution ẋ1 = x2 which implies ẍ1 = ẋ2
and substitute. This operation is reversible - each ODE can be derived from the other.

What are the orders of the ODEs in the examples? (i) is second order in one variable,
(ii) is a first order equation in one (dependent) variable, and (iii) is a first order system of
equations in two variables. First order equations in n-variables , (x1, . . . , xn) ∈ Rn, arise
when each xi, 1 ≤ i ≤ n is dependent on the independent variable time t,

ẋ1 = f1(x1, . . . , xn),
. . . ,

ẋn = fn(x1, . . . , xn). (1.2)

Introducing x = (x1, . . . , xn), and the vector function

f(x) = ( f1(x), . . . , fn(x)) : Rn → Rn

enables us to write the system of equations 1.2 as a single vector equation

ẋ = f(x) (1.3)

where the vector field f on Rn associates a vector f(x) to the point x = (x1, . . . , xn) ∈ Rn.
These equations are describing how the variables x1, . . . , xn are evolving or changing

with time, hence the idea of a dynamical system. Each function fi, i ∈ {1, . . . , n} is as-
sumed continuously differentiable with respect to each of the component variables xj of
x.
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Figure 1: An illustration of the vector field for equation 1.4 and the resulting solution curves
of concentric circles centred on the fixed point (x, y) = (0, 0) which form a circular flow in an
clockwise direction.

In the case of n = 1 for equation 1.3, the system reduces to a single scalar equation,
ẋ1 = f1(x1), or simplifying notation, ẋ = f (x), with x ∈ R, and f : R→ R. The solutions
are x = x(t) ∈ R such d

dt (x(t)) ≡ f (x(t)).
The case n = 2 for equation 1.3 has ẋ = f (x, y), ẏ = g(x, y) where x = (x1, x2) =

(x, y) and ( f1, f2) = ( f , g) (for ease of notation). This, similar to the case n = 1, gives rise
to solutions (x(t), y(t)) ∈ R2, which are parametrised curves in the plane. The domain
R2 is called the phase space. The collection of parameterised curves of the system of ODEs
form a phase portrait when seen as a dynamical system. The solution curves are also often
referred to as trajectories, or orbits.

Example 1.1. Consider the system on R2

ẋ = y (= f (x, y)), ẏ = −x (= g(x, y)) (1.4)

The vector field for this system is f(x, y) = (y,−x). It can be shown that solutions take the form
x(t) = x0 cos(t − t0) + y0 sin(t − t0) and y(t) = −x0 sin(t − t0) + y0 cos(t − t0) with the
initial condition x(t0) = x0 and y(t0) = y0 and the trajectories are circles centred on the origin.
See figure 1.

1.2 Vector fields

In vector notation ẋ = (x1, . . . , xn) provides the velocity at point x ∈ Rn as

ẋ = (ẋ1, ẋ2, . . . , ẋn) = f(x). (1.5)

This gives a distribution of vectors ( a "field of vectors", or a "vector field") as we sample
the various points x of the phase space Rn. A representative sample selection of the trajec-
tories which are tangent to the vectors form a phase portrait. The phase portrait should be
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sufficiently well populated with solution curves to get a clear idea of the likely behaviour
for any initial condition given that there is an assumption of non-crossing of trajectories
for differentiable choices of the vector field f.

In the above example the solution curves(trajectories) which follow the vector field
are circles centred on the origin. We now concentrate on vector fields on the line, before
returning to systems on the plane later.

1.3 Quantitative and qualitative approaches to ODEs

We begin with the case n = 1. In studying differential equations we can essentially look
for insight in two very different ways. One approach is to be quantitative - that is to use
the calculus to find a solution for x as a function of t and then find the particular solution
that satisfies what we call an initial condition where for a given value of t = t0, we have
x = x0. This is somewhat limited as it is easy to give simple differential equations which
either have no analytical solution, or solutions have very different long term behaviours,
or a formulaic solution arises from the analysis which is no easier to understand than the
original equation!

The alternative approach to investigating the precise functional form of the solutions
is to consider the qualitative behaviour of the systems where one captures the nature of the
solutions and not their precise formulaic dependence on the time t. For example, it may be
useful to know whether x = x(t), a trajectory of a system, is increasing or decreasing with
time. That might be useful if we are considering a population of some kind. Moreover,
is it increasing/decreasing in an uncontrolled way or is it moving towards an equilibrium
of some kind or a periodic behaviour. These are the sort of issues that we consider in
qualitative dynamical systems.

Definition 1.1. A point x∗ ∈ R is a fixed point of ẋ = f (x), f : R → R if f (x∗) = 0. Note
this means that x(t) ≡ x∗ for all t ∈ R is a solution curve (or trajectory, orbit).

Fixed points are also called equilibrium points from the analogy of when a dynami-
cal system represents the various motions of a mechanical system such as an oscillating
pendulum. The pendulum is in stable equilibrium when hanging down or unstable equi-
librium when pointing precariously upwards in an exact vertical position. The smallest
perturbation would then cause the pendulum to swing back towards its stable equilib-
rium position and hang vertically downwards.

Example 1.2. Consider the system on R given by

ẋ = x(x− 1)(x− 2)2, (1.6)

where x ∈ R. Deduce the phase portrait of the system on R. Note the form of graph( f ) where
f (x) = x(x− 1)(x− 2)2 in figure 2 (a). We see that the system has three fixed points at x = 0, 1, 2,
the zeroes of f . Also ẋ is positive on the intervals x < 0, 1 < x < 2, and 2 < x, and ẋ < 0 for
0 < x < 1 and 1 < x < 2. We deduce the phase portrait in figure 2(b).

Example 1.3. Consider the quantitative and qualitative approach to understanding

ẋ = sin(x). (1.7)

Quantitatvely
dx
dt

= sin(x) =⇒
∫ dx

sin(x)
=
∫

csc(x)dx =
∫

dt (1.8)

5



Figure 2: (a) The graphical form of the function f in equation 1.6. (b) The graph of f with arrows
depicting the direction of solution curves with increasing time t of ẋ = f (x) on the x-axis. (c) the
phase portrait of ẋ = f (x).

which implies
t = − ln(csc(x) + cot(x)) + C, (1.9)

where C is a constant .
If x = x0 when t = 0

t = ln
∣∣∣∣csc(x0) + cot(x0)

csc(x) + cot(x)

∣∣∣∣ (1.10)

So what does x look like as a function of t, and, even you managed to find it, what insight would
it give you?

Note directly from the equation 1.7 we see that we have fixed points for x∗ = nπ, n ∈ Z. Note
that checking these fixed point solutions is not easy to do in 1.10! until some simplifying is carried
out! For example,

ln
∣∣∣∣csc(x0) + cot(x0)

csc(x) + cot(x)

∣∣∣∣ = ln
∣∣∣∣cot(x0/2)

cot(x/2)

∣∣∣∣ (1.11)

which then enables the slightly better form of the solution as

cot(
x
2
) = cot(

x0

2
)et,

with initial condition x = x0 for t = 0.
Note further for the system 1.7 that ẋ is positive in the intervals (2nπ, (2n+ 1)π) and negative

in the intervals ((2n + 1)π, (2n + 2)π), n ∈ Z. With no further information this enables us in
figure 3 to give rough sketches of typical solutions for a variety of starting conditions which conveys
to the reader a confidence of the behaviour of the trajectories for any initial conditions x = x0 when
t = t0.

Example 1.4. Why is the qualitative behaviour of the system ẋ = g(x) on the interval [a, b] ⊂ R

where g(x) = (x− a)(b− x) similar to that of ẋ = sin(x) on [0, π]?

Example 1.5. Consider ẋ = ax. This equation can be solved directly to give x(t) = x0 exp a(t− t0)
where x = x0 when t = t0. We observe that |x(t)| increases/decreases as t increases for a > 0,
a < 0 respectively.
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Figure 3: (a) Qualitative behaviour of solution curves of ẋ = sin(x) in the xt−plane. Be-
tween the fixed point lines x = mπ, m ∈ Z, we have monotonic increasing solutions for x ∈
(2nπ, (2n + 1)π) with t, and monotonic decreasing solutions for x ∈ ((2n + 1)π, (2n + 2)π);
(b) the corresponding phase portrait with stable fixed points at x = 2nπ, alternating with unstable
points at x = (2n + 1)π.

Thus the dynamical system ẋ = ax has a single fixed point x∗ = 0 which is unstable for a > 0
in the sense that solutions with initial condition close to x∗ = 0 move away with increasing time,
and it is stable for a < 0 as solutions move towards x∗ = 0 with increasing time.

Example 1.6. This is an example of modelling population growth. The logistic equation for popu-
lation growth has two competing inputs. One is the exponential growth which gives the following
dynamics which can occur with uninhibited food supply and is modelled by

Ṅ = rN (1.12)

for N ≥ 0 with growth rate r. If N0 > 0 at t = 0 then N grows (exponentially) to infinity. This
is unrealistic as growth requires food supply, and usually runs out of momentum as the supply
diminishes. So a second contribution is introduced which inhibits growth, the logistic correction to
give

Ṅ = rN(1− N
k
) (1.13)

with r, k > 0, cf. ẋ = f (x).

1.4 Linear stability at a fixed point

Here we consider the linear stability at a fixed point of systems ẋ = f (x) on the real line R.
This process can determine the behaviour of the dynamical system close to a fixed point.
Note for 1.13 we have an unstable fixed point at N = 0, i.e. as t increases, the population
close to N = 0 increases. Also note that for populations close to the fixed point N = k, we
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Figure 4: The phase portraits of the dynamics of: (a) unrestricted population growth re. equation
ẋ = 2x, cf. 1.12; (b) population growth with a logistic correction: for the system ẋ = x(2− x), all
non-zero initial populations evolve with increasing time to the equilibrium population x = 2, ( cf.
equation 1.13 with k = 2).

have the population moving towards that value, not away from it. For N < k, Ṅ > 0, and
for N > k, Ṅ < 0.

Let x = x∗ be a fixed point of ẋ = f (x) and therefore f (x∗) = 0. Expand the function
f (x) in a Taylor series at x = x∗ using x(t) = x∗ + η(t) to obtain

η̇(t) =
d
dt
(x(t)− x∗) =

dx(t)
dt

= f (x(t)) = f (x∗ + η(t)) (1.14)

and
f (x∗ + η(t)) = f (x∗) + η f ′(x∗) + O(|η|2) (1.15)

We conclude that the linear approximation of the system ẋ = f (x) at the fixed point x = x∗

is
η̇ = f ′(x∗)η (1.16)

or η̇ = aη where a = f ′(x∗) which gives stability for a < 0 and instability for a > 0, cf.
section 1.4.

Returning to the equation 1.13, we can now consider the equilibrium(fixed) points N =
0 and N = k. If we define f (N) = rN(1− N

k ), then f ′(N) = r(1− 2N/k), and so f ′(0) =
r > 0, f ′(k) = −r thus illustrating linear instability at N = 0 and linear stability at N = k
as in the phase portrait in figure 4.

Example 1.7. Consider the dynamical system ẋ = f (x) where f (x) = x2 on R. The linear sta-
bility calculation at the fixed point x = x∗ gives a = f ′(x)|0 = 0. So we do not conclude stability
or instability for the fixed point. Noting ẋ > 0 for x 6= 0 we see that we have a "stable/unstable"
fixed point at x∗ = 0. "stable" from the left (x negative) and "unstable" to the right (x positive).

Definition 1.2. Stability at a fixed point
A fixed point x = x∗ of ẋ = f (x) is stable if the orbit for any point sufficiently close to x∗ remains
close to x∗.
A stable point is said to be asymptotically stable if, in addition, the orbits of all points in a suffi-
ciently small neighbourhood of x = x∗ converge to the the fixed point, within that neighbourhood.
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A fixed point x = x∗ of ẋ = f (x) is unstable if there exist points arbitrarily close to x∗ whose
orbits move far away in finite time.
A fixed point x = x∗ is linearly stable if f ′(x∗) < 0.
A fixed point x = x∗ is linearly unstable if f ′(x∗) > 0.

The condition f ′(x∗) = 0 says "further investigation is needed" of the stability behaviour of
the fixed point. Graphing the function f locally at x = x∗ is usually helpful here.

1.5 Existence and uniqueness of solutions

Key questions are a) Does a solution to an ODE exist for any initial condition x = x0, and
t = t0? - and, b), if so, is the solution unique?

Example 1.8. This is an example of non-uniqueness. Consider ẋ = f (x) with f (x) = x
1
3 . The

function f : R → R, is well-defined and continuous in R, but it is not differentiable at x = 0, a
fixed point of the system. Note x1(t) ≡ 0 for all t ∈ R is a solution by a direct check. Also, the
function x2(t) = (2

3 t)
3
2 satisfies ẋ2 = (2

3 t)
1
2 = x2(t)

1
3 with the initial condition x2(0) = 0. So we

have two solutions x1(t) and x2(t), for all t ∈ R, both of which have the same initial condition for
t = 0. To avoid this problem, both existence and uniqueness of solutions is ensured by the following
theorem.

Theorem 1.1. (Existence and Uniqueness) Let f : X(⊂ R) → R be a differentiable function
(vector field) on the open interval X(⊂ R). Then for every x0 ∈ X, the equation ẋ = f (x) has
a solution x(t), with x(0) = x0, for t ∈ I, where the open interval I contains the point t = 0.
Moreover, the solution is unique, i.e. any two solutions with the same initial condition coincide on
a neighbourhood of t = 0.

1.5.1 Blow-up of solutions

The theorem above guarantees existence and uniqueness of a solution for sufficiently small
t. Do solutions exist for all t? Not necessarily, see below!

Example 1.9. Let f (x) = 1 + x2 and suppose x = x0 = 0 for t = 0.

dx
dt

= 1 + x2 =⇒
∫ x

x0

dx
1 + x2 =

∫ t

0
dt, (1.17)

and so,

arctan(x)− arctan(x0) = t− 0 =⇒ t = arctan(x) =⇒ x = tan(t). (1.18)

Note x(t)→ ∞ as t→ π
2 , and so the orbit reaches infinity in finite time!
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2 Bifurcations of dynamical systems on R

2.1 Introduction

Often, differential equations contain parameters, e.g. ẋ = ax2 − 1, where a is a constant
that can be chosen. As one might expect, choosing different values of a may give rise to
different types of phase portrait. Finding the critical parameter values for where and how
the phase portrait changes is the the study of bifurcation of systems. We investigate this in
the following example.

Example 2.1. Consider ẋ = ax2 − 1 for different values of a ∈ R.
(i) let a = −1; then ẋ = ax2 − 1 = −x2 − 1. Now ẋ < 0 for all x, and so there are no fixed

points.
(ii) let a = 1; then ẋ = x2 − 1. This system has two fixed points at x = ±1, x = +1 is

unstable, and x = −1 is stable, cf. figure 5. Note that the behaviour for all a < 0, (a > 0) is the

Figure 5: Phase portraits of the system ẋ = ax2 − 1 for a = −1, a = 1. We see that by changing
the parameter from a = −1 to a = 1 provides phase portraits which are are qualitatively different.
We say that this family of systems, as a ∈ R is varied, exhibits various qualitative behaviours.

same respectively as for (i) (and (ii)). However, there is a change in the structure (a bifurcation) of
the phase portrait at a = 0.

Bifurcations can be classified according to how many parameters are needed for them
to occur "stably" as a family of phase portraits. The precise interpretation of this property
is not addressed in this module, but we now discuss the bifurcations which occur stably
in systems on the line with just a single parameter.

2.2 Saddle-node bifurcation

The saddle-node bifurcation involves the creation or destruction of a pair of fixed points
as a parameter is varied. The proto-typical example is given by the 1-parameter family of
vector fields on R given by

ẋ = r + x2, (2.1)

where r ∈ R.
10



Figure 6: (a) Phase portraits of the vector field 2.1 for parameter choices r < 0, r = 0, r > 0.
The diagram shows for equation 2.1 that as r increases from negative values through zero, two fixed
points (x∗− stable; x∗+ unstable) come together to form a single stable-unstable fixed point x∗0 for
r = 0, which then vanishes for all r > 0 when the phase portraits have no fixed points. (b) Phase
portraits of the vector field 2.4. This is a saddle-node bifurcation where a fixed point emerges for
r = 1, and which then splits to form two fixed points x∗2(stable) and x∗3 (unstable) as r increases
beyond r = 1.

In general, the bifurcation points of ẋ = f (x, r) = fr(x) occur when there are changes
of stability for the the set of fixed points, i.e. f (x, r) = 0, and the potential local change
of stability of the fixed point, i.e. f ′r(x) = 0. These conditions have to be considered in
tandem.

2.2.1 Bifurcation diagrams

A way to exhibit the changing behaviour of a dynamical system with the variation of its
parameter is to exhibit a bifurcation diagram.

Example 2.2. Consider
ẋ = r + x2 = fr(x). (2.2)

A bifurcation diagram for this system is a graph in the rx-plane representing the varying pattern
of fixed points of the equation 2.2 and their stabilities. The phase portrait for the evolution of x can
be depicted by considering particular, but representative, choices of the parameter r.

First of all we investigate with linear stability analysis. The fixed points occur when fr(x) = 0,
i.e. for x = ±

√
(− r). Therefore, we have

(i) no solutions for r > 0;

(ii) one solution, x∗ = 0, for r = 0;

(iii) two solutions, x∗+ = +
√
(− r) and x∗− = −

√
(− r), for r < 0.

Linear stability calculations give

f ′(x∗+) = 2x|x=x∗+ > 0− unstable

f ′(x∗−) = 2x|x=x∗− < 0− stable (2.3)
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For the case r = 0, compare with example 1.7. The flow of system 2.2 with increasing time can now
be completed (see figure 6) reference to the stability properties of the fixed points and the functional
form of the vector field f . Note r has no dynamic attached to it, so effectively, the variable can be
interpreted as ṙ = 0.

Example 2.3. Consider
ẋ = r− x− e−x, r ∈ R. (2.4)

Fixed points arise where r− x− e−x = 0 as r varies. Drawing the graphs y = r− x and y = e−x

and checking where they interest will exhibit the fixed points of the dynamical systems.
The intersection where fixed points appear to vanish will occur at a common tangency of the

two graphs, i.e. the curves will touch when r − x = e−x and the common tangency occurs when
−1 = −e−x which implies x = 0 and, therefore, r = 1. Further investigation gives

(i) r < 1 - no intersections - no fixed points

(ii) r = 1 - 1 intersection - one fixed point x∗1 = 0

(iii) r > 1 - 2 intersections - two fixed points x∗2 and x∗3 .

To find approximate values for x∗2 , x∗3 , we consider a Taylor expansion in powers of x about the
origin to obtain :

fr(x) = r− x− e−x (2.5)

= r− x− (1− x +
x2

2!
− . . . ) (2.6)

= (r− 1)− x2

2!
+ O(x3) (2.7)

So x∗2 ≈ +
√

2(r− 1) and x∗3 ≈ −
√

2(r− 1). Also f ′r(x) = −x + O(x2). Therefore x∗2 is a
stable fixed point and x∗3 is unstable.

2.2.2 Saddle-node normal form

For this section, we regard a one-parameter family of functions as a function of two vari-
ables f : (x, r) → f (x, r). Assume that f is sufficiently differentiable in both variables.
Assume ẋ = f (x, r) has a fixed point (x, r) = (x∗, rc), and assume that it is a double root
in x, i.e.

f (x∗, rc) = 0 and
∂ f
∂x

(x∗, rc) = 0. (2.8)

Expanding f in a double power series in the variable x and r gives

f (x, r) = f (x∗, rc) + (x− x∗)
∂ f
∂x

(x∗, rc) + (r− rc)
∂ f
∂r

(x∗, rc)+

+
1
2!
(x− x∗)2 ∂2 f

∂x2 (x∗, rc) + (x− x∗)(r− rc)
∂2 f
∂x∂r

(x∗, rc)

+O(|r− rc|2, |x− x∗|3) (2.9)

If we label key coefficients in the equation 2.9 as

A =
∂ f
∂r

(x∗, rc); B =
1
2!

∂2 f
∂x2 (x∗, rc); C =

∂2 f
∂x∂r

(x∗, rc). (2.10)

12



Figure 7: The graphs of f (x) = rx− x2 for r < 0(r = −1), r = 0, r > 0(r = 1).

Shifting the origin of the (x, r) plane to (x∗, rc), (by using local coordinates u = x− x∗ and
µ = r− rc) and using 2.8 we obtain

u̇ = Aµ + Bu2 + Cuµ + O(|µ2|, |u3|) (2.11)

If A, B 6= 0, then the change of coordinates v = u + Cµ
2B and parameter change η = µ− C2µ2

4AB
(both invertible) give

v̇ = Aµ + Bv2 + O(|µ2|, |v3|) (2.12)

the normal form for a saddle-node bifurcation. The condition that A 6= 0 is called the saddle-
node transversality condition.

2.3 Transcritical bifurcation

For this bifurcation, as a parameter is varied, two fixed points collide exchanging stabili-
ties.

Example 2.4. A proto-typical example of a transcritical bifurcation is given by

ẋ = rx− x2 (2.13)

where r ∈ R. Fixed points are x = x∗1 = 0 and x = x∗2 = r, for all r ∈ R. The stability of a fixed
point is given by evaluating the derivative of fr(x) = rx− x2, i.e. f ′r(x) = r− 2x.

For x = x∗1 , f ′r(x∗1) = r, and, for x = x∗2 , f ′r(x∗2) = r− 2r = −r.
Therefore for r < 0, x∗1 is stable, and x∗2 is unstable, whereas, for r > 0, x∗1 is unstable, and x∗2

is stable; stabilities are exchanged. The fixed point for r = 0 at x = 0 is a saddle-node type. Note
A=0, B=-1,C=1 in this example.

Example 2.5. Consider

ẋ = x(1− x2)− α(1− e−βx) = f(α,β)(x) (2.14)

where α, β ∈ R are parameters. We represent them as a point (α, β) ∈ R2. Note that x = 0 implies
f(α,β)(0) = 0 and so x∗1 = 0 is a fixed point for all (α, β) ∈ R2.

13



Figure 8: The two families of fixed points x∗1 ≡ 0 and x∗2 = r for the vectorfield 2.13 exchange
stability roles at r = 0

We will show that the system undergoes a transcritical bifurcation as the real parameter µ = ab
increases through µ = 1. We require that the vector field have a double root at the bifurcation point.
Note

d f(α,β)(x)
dx

= 1− 3x2 − αβe−βx =⇒
d f(α,β)(x)

dx
|x∗1 = 1− αβ = 1− µ. (2.15)

Thus the stability of x = x∗1 switches at µ = 1.
To find approximate values of the fixed points we expand

f(α,β)(x) =x− α(1− (1− βx +
1
2

β2x2 + O(x3)))

=(1− αβ)x +
1
2

αβ2x2 + O(x3) (2.16)

We obtain x∗1 = 0 (as before) and x∗2 ≈ −2(1− αβ)/αβ2, provided αβ 6= 0. Note that at
µ = αβ = 1, x∗1 = x∗2 = 0 when the stability of x∗1 changes. We can now check that the stability
of x∗2 simultaneously changes at µ = 1 opposite to the stability of x∗1 , as required for a transcritical
bifurcation using

d f(α,β)(x)
dx

= 1− αβ + 2
1
2

αβ2x + O(x2) (2.17)

gives

x∗1 :
d f(α,β)

dx (x∗1) = 1− αβ = 1− µ
We obtain: µ > 1, stable; µ < 1, unstable.

14



x∗2 :
d f(α,β)

dx (x∗2) = −(1− αβ) = −(1− µ)
We obtain µ > 1, unstable; µ < 1, stable.

Example 2.6. Consider the one parameter system

ẋ = r ln(x) + x− 1 = fr(x). (2.18)

where r ∈ R. We note that fr(1) = 0, and so x = x∗1 = 1 is a fixed point for all r. Also

d fr(x)
dx
|x∗1 =

( r
x
+ 1
)
|x∗1 = r + 1, (2.19)

.
Therefore we have a double root of fr for x = x∗1 = 1 and rc = −1. Note that the transversality

condition for a saddle-node bifurcation fails here, i.e. a = d fr(x)
dr |(x∗1 ,rc) = 0, (recall for a saddle-node

bifurcation we required a 6= 0). However,

∂2 fr(x)
∂x2 |(x∗1 ,rc) =

−r
x2 |(x∗1 ,rc)=(1,−1) = 1 6= 0 (i.e. b = 1). (2.20)

With a = 0 in equation 2.10, we now require c 6= 0 - it is the next lowest degree term in the
expansion involving the parameter. Checking the value of c, we see that

∂2 fr(x)
∂x∂r

|(x∗1 ,rc) =
1
x
|(x∗1 ,rc)=(1,−1) = 1 6= 0 (i.e. c = 1). (2.21)

Note the two fixed points are x∗1 ≡ 1 and the other comes from further consideration of

0 = r ln(x) + x− 1 (2.22)

Introduce a local coordinate y = x− 1 which implies we consider

0 =r ln(1 + y) + y = r(y +
y2

2
) + y + O(|y3|)

=(r + 1)y + r
y2

2
+ O(|y3|) (2.23)

and we obtain in local coordinates y∗1 = 0 and y∗2 ≈
−2(r+1)

r

To obtain the normal form for a transcritical bifurcation from equation 2.23, we intro-
duce new coordinates y = kz, with k a constant to be determined, and µ = r + 1. Then,

ẏ =r ln(1 + y) + y
=⇒ kż =(µ− 1) ln(1 + kz) + kz

=µkz + (µ− 1)
k2z2

2
+ O(|z|3) (2.24)

We obtain the normal form
ż = µz− z2 + O(|z|3) (2.25)

if we choose k = −2/(µ− 1).

15



Figure 9: The bifurcation diagram exhibits a one-parameter family given by equation 2.27, and
samples of the phase portraits for the qualitatively different vector fields for r < 0, r = 0, and r > 0
including the fixed points and their stabilities.

2.4 Pitchfork bifurcation

This is a bifurcation which often occurs in symmetric or equivariant vector fields where the
system ẋ = fr(x) satisfies

fr(x) = − fr(−x). (2.26)

Then, necessarily x∗ = 0 is a fixed point for all r as fr(0) = 0 ∀r ∈ R. A saddle-node
bifurcation cannot occur with this type of fixed point, as a necessary consequence of the

symmetry gives ∂2 fr
∂x2 (x)|x=0 ≡ 0. Note also that ∂ fr

∂r |x=00 ≡ 0. So we have no linear term in

r and no quadratic terms in x. So we impose the next degeneracy condition ∂3 fr
∂x3 (x)|0 6= 0.

The normal forms we obtain are

ẋ = rx− x3 −−supercritical pitchfork with
∂3 fr

∂x3 (x)|0 < 0. (2.27)

ẋ = rx + x3 −−subcritical pitchfork with
∂3 fr

∂x3 (x)|0 > 0. (2.28)

The bifurcation diagram resembles a "pitchfork" shape with a fixed point x = 0 for all
r, and two further fixed points growing from x = 0 as x = ±

√
(r) as r increases for r > 0

(i.e. after the bifurcation) in the supercritical case; x = ±
√
(− r) in the subcritical case (i.e.

before the bifurcation for r < 0.).

Example 2.7. Consider the 1-parameter system ẋ = −x + β tanh(x) = fβ(x). Note fβ(0) = 0,
for all β. Also

∂ fβ

∂x
(x)|x=0 = (−1 + β/ cosh2(x))|x=0 = −1 + β. (2.29)
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So β = 1 is a bifurcation point at which the stability of the fixed point x∗0 = 0 changes.
We have

∂3 fβ

∂x3 (x)|(x,β)=(0,1) = 2β
2 cosh2(x)− 3

cosh4(x)
|(x,β)=(0,1) = −2.

2.5 Normal forms for bifurcations

In this section, we will interpret the vector field of a one-parameter family of vector fields

ẋ = fr(x) (2.30)

as a function of two variables, i.e. fr(x) = f (x, r), as in equation 2.9. This is for ease of
notation. Let us assume that f is as differentiable in both variables as many times as we
wish (note a differentiable function is continuous).

2.5.1 Non-bifurcation condition

Let x = x∗ for r = rc be a fixed point of ẋ = fr(x), i.e. f (x∗, rc) = 0. Suppose that

∂ f
∂x

(x∗, rc) 6= 0. (2.31)

This condition ensures by the Implicit Function Theorem that there exists a differentiable
function x = x(r) for r in an open neighbourhood of r = rc with x(rc) = x∗ which satisfies

f (x(r), r) ≡ 0. (2.32)

In other words, there is a line of fixed points x = x(r), for an open interval of R containing
rc. Note the equation 2.31 implies that ∂ f

∂x (x(r), r) 6= 0 by continuity of f for sufficiently
small r− rc . Thus there is no change in the stability of the fixed point x = x(r) for r− rc
small, and it follows that there is no bifurcation of the fixed point x = x∗ at r = rc if
condition 2.31 holds.

Therefore, for bifurcations to occur, it is necessary that

f (x, r) = 0,
∂ f
∂x

(x, r) = 0. (2.33)

With these conditions the Taylor expansion of f (x, r) at a fixed point (x∗, rc) of ẋ = f (x)
becomes

f (x, r) =A(r− rc) + B(x− x∗)2 + C(x− x∗)(r− rc)

+D(r− rc)
2 + E(x− x∗)3 + . . . (2.34)

with

A =
∂ f
∂r

(x∗, rc); B =
1
2!

∂2 f
∂x2 (x∗, rc); C =

∂2 f
∂x∂r

(x∗, rc);

D =
1
2!

∂2 f
∂r2 (x∗, rc); E =

1
3!

∂3 f
∂x3 (x∗, rc). (2.35)

Introduce local coordinates and parameters y = x − x∗ and µ = r − rc so that equation
2.34 becomes

f (x, r) =Aµ + By2 + Cyµ + Dµ2 + Ey3 + . . . (2.36)

with added terms (coefficients D and E).
17



2.5.2 Normal form reduction

We now refer to equation 2.36 for this section.

(a) Saddle-node - A 6= 0; B 6= 0.

The constraint A 6= 0 is the transversality condition, and the constraint B 6= 0 is the
non-degeneracy condition.

We have ẏ = Aµ + By2 + Cyµ + Dµ2 + . . . . If C 6= 0, then the transformation z =

y + Cµ
2B - completing the square - gives

ż = Aν + Bz2 + O(|ν|2, |z|3)

if ν = µ + µ2(D− C2

4B )/A. This gives a saddle-node bifurcation.

(b) Transcritical - A = 0; B 6= 0, C 6= 0.

The constraint C 6= 0 is the transversality condition, and the constraint B 6= 0 is the
non-degeneracy condition.

We have ẏ = By2 + Cyµ + O(|µ2|, |y3|) and this gives a transcritical bifurcation..

(c) Pitchfork - A = 0; B = 0, C 6= 0, E 6= 0.

Here E = ∂3 f
∂x3 (x∗, rc) and we have ẏ = Cyµ + Ey3 + O(|µ2|, |y4|).

For an appropriate constant k there are two other solutions y ≈ ±
√
−Cµ

E (1 + k
√

µ),

depending on whether the real
√
(−Cµ

E ) exists for µ > 0 or µ < 0, which gives, respec-
tively, a supercritical or subcritical pitchfork bifurcation.

The constraint C 6= 0 is the transversality condition, and the constraint E 6= 0 is the non-
degeneracy condition.

Example 2.8. Investigate the 1-parameter system

ẋ = fr(x) = x5 − x3 − rx. (2.37)

It can be verified that the system has simultaneous saddle-node bifurcations at r = −1
4 and a sub-

critical pitchfork bifurcation at r = 0. The system has 1 fixed point for r < −1
4 ; 3 fixed points

for r = −1
4 , 5 fixed points for −1

4 < r < 0; and 3 fixed points for r ≥ 0. See figure 10 for some
graphical information.
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Figure 10: The set of fixed points in the xr−plane of the vector field ẋ = fr(x) in equation 2.37, for
r ∈ R. It can be shown that saddle-node bifurcations occur at r = −1

4 and a sub-critical pitchfork
bifurcation occurs at r = 0.

3 Dynamical systems on the circle S1

3.1 Vector fields and ODEs on the circle S1

We denote the unit circle by S1 or S (cf. R1 or R). To define an ODE on S1 requires an
angular coordinate to ensure that the vector field has built-in periodicity of 2π radians.
We define the angular coordinate θ ∈ S1 by the projection map p : R → S where p(x) =
x(mod 2π) and we use the notation p(x) = θ. We now consider vector fields on R with
the following properties:

(i) f : R→ R is continuously differentiable;

(ii) f (x + 2kπ) = f (x), for all x ∈ R and k ∈ Z.

Note that (i) implies d f
dx (x) = d f

dx (x + 2kπ) for all x ∈ R, and f induces a continuously
differentiable map g : S1 → R1 on the circle to itself by defining

g(θ) = g(p(x)) def
= ( f (x)).

The function g is well-defined on S1 given the properties of f . For any k ∈ Z, the trigono-
metric functions cos(kx) and sin(kx) are automatically periodic, of period 2π, and so the
more general periodic construct, the Fourier series,

f (x) = ∑
k∈I

ak cos(kx) + bk sin(kx),

where I ⊂ Z, ak, bk ∈ R, also has periodicity 2π.
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Example 3.1. Consider a constant circular flow (or uniform rotation) on the circle given by the
ODE

θ̇ = ω, which has solution θ(t) = ωt + θ0 (mod 2π) (3.1)

given θ = θ0 when t = 0. We see that

θ(t) = wt + θ0 ≡ w(t +
2π

ω
) + θ0 = θ(t +

2π

ω
), (3.2)

for all t ∈ R. The orbit is periodic on S1 with period 2π
ω .

Example 3.2. Now consider the non-uniform rotation given by

θ̇ = ω− a sin(θ), (3.3)

with ω, a ∈ R and ω > 0. The fixed points of the flow occur for θ̇ = 0 and are given by θ = θ∗

where sin(θ∗) = ω
a , and hence fixed points only occur when ω ≤ |a|. Also d f

dθ (θ) = −a cos(θ) and
cos(θ∗) = ±

√
(1− ω2

a2 ). Hence θ = θ1 = is a stable fixed point, and θ = θ2 is an unstable fixed
point. The oscillation period for ω > |a| is given by the following calculation. Let the oscillation
have period T, and recall that θ is a periodic coordinate of period 2π. Therefore∫ T

0
dt =

∫ π

−π

dθ

ω− a sin(θ)

Let u = tan( θ
2), then

cos2
(

θ

2

)
=

1

sec2
(

θ
2

) =
1

1 + tan2
(

θ
2

) =
1

1 + u2 .

Also
sin(θ) = 2 sin

(
θ

2

)
cos

(
θ

2

)
= 2 tan

(
θ

2

)
cos2

(
θ

2

)
=

2u
1 + u2 .

Furthermore,

du =
1

2 cos2
(

θ
2

)dθ =
1 + u2

2
dθ,

and we conclude

T = 2
∫ ∞

−∞

du
ωu2 − 2au + w

=
2√

(ω2 − a2)
arctan

(
ωu− a√
(ω2 − a2)

)
|∞−∞ =

2π√
(ω2 − a2)

(3.4)
We then see that as a→ ω−, we have T → ∞, and as a→ 0, we have T → 2π

ω which agrees with
the uniform rotation period obtained in the previous example.

3.2 Stability definitions refined

The possible dynamical behaviour on the circle means that we need to be more precise
about stability definitions.
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Figure 11: Examples of the phase portraits the vector field 3.3 of the circle. In (a), representing
|ω/a| > 1, there are no fixed points but the rotation rate θ̇ is at its slowest(a bottle-neck) when
θ = π

2 and is at its fastest for θ = 3π
2 ; in (b), for ω

a = 1, there is a single stable/unstable fixed
point at θ = π

2 ; in (c), two fixed points occur(one stable and one unstable) close to θ = π
2 when

ω/a ≈ 1− .
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Figure 12: Fixed points for systems on the circle are stable/unstable by reference to the stability
criteria of fixed points on the real line. However, for the vectorfield 3.3 on S1, observe that every
orbit through θ = θ0, for all θ0 ∈ S1, at t = 0, tends asymptotically to the single fixed point
θ = θ∗ = π

2 (for ω
a = 1) as t→ ∞ even though the fixed point itself is unstable!

Example 3.3. Consider the dynamics of θ̇ = ω − a sin(θ). We already have that for |a| < |ω|,
there are no fixed points and so the flow is either clockwise and anti-clockwise. The period lengthens
to infinity as a→ ω−. Increasing |a| produces a ’bottleneck’ of a slower flow in the neighbourhood
of θ = θ∗ = π

2 where sin(θ∗) ≈ (ω
a ) for ω

a ≈ 1. For ω
a = 1, the vector field has a single fixed

point at θ = π
2 , and the "bottlemeck" becomes a "stopper", see figure 12.

This situation, as a result of the nature of the circle on which the dynamics occurs requires
further investigation, since the fixed point is not stable, but it has some asymptotic stability proper-
ties! Note in (b) of figure 11, observe that every orbit through θ = θ0 at t = 0 tends asymptotically
to the single fixed point θ = θ∗ = π

2 (for a
ω = 1) as t → ∞ even though the fixed point has

"stable/unstable" characteristics!

Definition 3.1. A fixed point θ = θ∗ ∈ S1 of θ̇ = f (θ) - [x = x∗ ∈ R of ẋ = f (x)] - is stable if
for every neighbourhood V of θ∗ [x∗], there is a neighbourhood U of θ∗ [x∗] such that all solutions
θ(t) with θ(0) ∈ U - [x(t) with x(0) ∈ U]- remain in the set V for all t > 0.
A fixed point θ = θ∗ ∈ S1 of θ̇ = f (θ) - [x = x∗ ∈ R of ẋ = f (x)] - is unstable if it is not stable.

Definition 3.2. A stable fixed point θ = θ∗ ∈ S1 - [x = x∗ ∈ R] - is asymptotically stable if the
neighbourhood U can also be chosen so that limt→∞ θ(t) = θ∗ for θ(0) ∈ U - [limt→∞ x(t) = x∗

for x(0) ∈ U].

3.3 Attractors and basins of attraction

There is a more general definition attractor which is applicable to more complex invariant
sets than fixed points - we will be considering limit cycles in the last chapter.

Definition 3.3. An attractor is a subset A of the phase space (R or S so far) which is invariant
as time increases, i.e no orbits escape from A as time increases, and there exists a neighbourhood N
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of A such that for every orbit x(t) with x(0) ∈ N remains in N and x(t) → A as t → ∞. Also
the set A is minimal.

Comment: The only attractors on the line and circle are fixed points.

Definition 3.4. The largest such neighbourhood, B(A), which consists of all points b whose orbits
asymptotically approach the attractor A as t → ∞, is called the basin of attraction for A. More
formally, B(A) is the set of all points b in the phase space with the following property: for any open
neighborhood N of A, there is a positive constant T such that the solution curve x(t) ∈ N, where
x(0) = b, for all t > T.

Comment. We often us the notation φt(b) to to indicate the point x(t) on the solution curve
where x(0). So {φt(b), t ∈ R} is the solution curve or orbit through the point b at time
zero. Think of the colloquial use of the word orbit for the trajectory as time evolves of a
planet’s path around the sun parametrised by time

Comment The basin of attraction B(θ0), - [B(x0)] - for a fixed point θ = θ∗ ∈ S1 - [x =
x0 ∈ R] - is the set of all points θ0 ∈ S1 - [x0 ∈ R] ,- the solution curve θ(t) - [x(t)] - with
θ(0) = θ0 - [x(0) = x0] - is such that limt→∞ θ(t) = θ∗, [limt→∞ x(t)→ x∗].

These definitions address the issue of the unique fixed point θ = θ∗ in example 3.3,
in the case ω/a = 1 The fixed point is not asymptotically stable, in fact it is unstable, even
though it is globally attracting in that all orbits converge to the fixed point θ = θ∗ as
time t → ∞! The conundrum is addressed by observing that the apparent "asymptotic"
behaviour is obtained from the global properties of the orbits, together with the non-
Euclidean structure of S, rather than local dynamical behaviour being contained wholly
arbitrarily small neighbourhoods of the fixed point.

3.4 Comment on stability

The above discussion highlights how some descriptions seem almost self-contradictory
without closer scrutiny and an accommodation of topologies other that Rn as the state
space. For example we have just highlighted a fixed point which while it is attracting is
not stable cf. figure 12 (a).

We also, more generally, can have fixed points which are stable but not attracting, see,
for example, figure 1. We can also have points which are stable and attracting, namely
asymptotically stable fixed points. Recall the saddle-node fixed point given by the basic
example ẋ = x2 on R. This type of fixed point at x = 0 is often described, loosely, as
stable/unstable because it has orbits which move away on one side of the fixed point, and
move towards the fixed point on the other side. The fixed point for ẋ = x2 is actually an
unstable fixed point, but the loose description stable/unstable has a clear visual interpretation
on the real line. However, it is better to describe it as a saddle-node for reasons which will
become more obvious in later sections.

Two-dimensional Dynamical Systems
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4 Linear dynamical systems on the plane R2

4.1 Introduction

We consider vector fields f : R2 → R2, where f is linear in the variables x = (x, y) ∈ R2,
i.e. f(αx + βx′) = αf(x) + βf(x′) for x, x′ ∈ R2 and α, β ∈ R. So the linear function, and
the corresponding dynamical system, can be represented in matrix form[

ẋ
ẏ

]
=

[
ax + by
cx + dy

]
=

[
a b
c d

] [
x
y

]
, (4.1)

or
ż = Az, (4.2)

where

z =

[
x
y

]
and A =

[
a b
c d

]
. (4.3)

Note that a linear system always has a fixed point at (x, y) = (0, 0) and we are able to
determine the nature of the fixed point from the eigenvalues of the coefficient matrix A.
Recall that the eigenvalues of the matrix A are given by the solutions of the quadratic
equation in λ given by Det(λI− A) = 0. The equation takes the form

λ2 − τλ + δ = 0, (4.4)

where τ = Tr(A) = a + d and δ = Det(A) = ad− bc, cf. equation 4.3.

a=-2

a=0

a=-1

a=2

a=-0.5

Figure 13: The system 4.6 exhibits a variety of phase portraits in the xy−plane as the parameter
a is varied. The five distinct phase portraits for the fixed point x∗ = (0, 0) are for the parameter
intervals a < −1, a = −1, −1 < a < 0, a = 0, a > 0.
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Example 4.1. Let the coefficient matrix be

A =

[
a 0
0 −1

]
(4.5)

which gives the dynamical system. Phase portraits for this system can be seen in figure 13.

ẋ = ax, ẏ = −y. (4.6)

Note that the nature of the solution curves of the systems are easy to address, because of the
decoupled(diagonal) form of matrix A, which has solution curves in parametrised form as x(t) =
x(0)eat and y(t) = y(0)e−t.

Example 4.2. Consider the linear system with f(x, y) = (y,−ω2x). That is

ẋ = y, ẏ = −ω2x (4.7)

Note the curves in R2 are invariant curves for the system.

H(x, y) = ω2x2 + y2. (4.8)

Hence, if a solution of the system 4.7, x(t) = (x(t), y(t)), has an initial point x(t) = (x0, y0) for

Figure 14: The phase portrait of the system 4.7 with a centre fixed point surrounded by elliptic
closed orbits (ω = 2 in this illustration).

t = 0, and H(x(0)) = H0 then H(x(t)) ≡ H0, for t ∈ R.
To check this, we note that

d
dt
(H(x, y)) =

d
dt
(ω2x2 + y2) = 2ω2x

dx
dt

+ 2y
dy
dt
≡ 0. (4.9)

Hence, the orbits(solution curves) of the system 4.7 remain on the constant (elliptical) curves of the
functions H - we say the orbits follow the level contours of the function H. Note the fixed point at
x = (0, 0) of the system in equation 4.7 is said to be stable, but not asymptotically stable. Note the
earth’s elliptical orbit is stable in that it not only remains close to the sun, but it is neither spiralling
into or away from the sun - fortunately, it is not asymptotically stable!
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4.1.1 Equivalence of linear systems

Let z = Pw be a linear change of coordinates, with P ia non-singular matrix, where

z =

[
x
y

]
, and w =

[
u
v

]
. (4.10)

Since P−1 exists, it follows that

ż = Az =⇒ Pẇ = APw,

and therefore, if
ẇ = P−1APw.

So we have changed the system ż = Az to ẇ = P−1APw, and a natural question to
ask is whether we can choose a matrix P so that the matrix P−1AP is easier to work with?
It should also be noted that this change of coordinates is reversible, i.e. w = P−1z, which
exists as P is non-singular, converts the system ẇ = P−1APw back to ż = Az, and hence,
the two systems are interchangeable!

4.2 Classification of linear systems

Theorem 4.1. Let A be a 2× 2 real matrix, then there is a 2× 2 non-singular real matrix P such
that

P−1AP = J,

where J is a Jordan canonical matrix, which take the following forms:

J1 =

[
λ1 0
0 λ2

]
, J2 =

[
λ 1
0 λ

]
, J3 =

[
α −β
β α

]
. (4.11)

The matrices A and J have the same eigenvalues as they are similar, as shown in the
following lemma.

Lemma 4.1. The matrices A and J have the same eigenvalues as they are similar by the conjugating
matrix P.

Proof Recall that the eigenvalues of A are given by the roots of the polynomial in λ de-
fined by Det(λI−A) = 0, but

Det(P−1) · Det(P) = Det(P−1P) = Det(I) = 1,

and so,

Det(λI−A) =Det(P−1) · Det(λI−A) · Det(P)

=Det(P−1(λI−A)P) = Det(λI− P−1AP)
=Det(λI− J) (4.12)

Note J can have several eigenvalue types:

1. J1 eigenvalues - {λ1, λ2} ⊂ R

2. J2 eigenvalues - {λ, λ} ⊂ R,

3. J3 eigenvalues - {α− iβ, α + iβ}, {α, β} ⊂ R
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4.2.1 Linear systems with Jordan coefficient matrices

(i)

ẇ =

[
u̇
v̇

]
=

[
λ1 0
0 λ2

] [
u
v

]
(4.13)

with w(t) = (u(t), v(t)) = (u(0)eλ1t, v(0)eλ2t)

(ii)

ẇ =

[
u̇
v̇

]
=

[
λ 1
0 λ

] [
u
v

]
(4.14)

with w(t) = (u(t), v(t)) = (u(0)eλt + v(0)teλt, v(0)eλt)

(iii)

ẇ =

[
u̇
v̇

]
=

[
α −β
β α

] [
u
v

]
(4.15)

with w(t) = (u(t), v(t)), where

u(t) = eαt(u(0) cos(βt)− v(0) sin(βt)

and
v(t) = eαt(u(0) sin(βt) + v(0) cos(βt)).

4.2.2 Polar coordinates: a nonlinear change of coordinates

Sometimes, it is advantageous to either directly model a system in polar coordinates, or
transform a model described in cartesian coordinates into the equivalent model in polar
coordinates for a clearer understanding of the system behaviour. This can be particularly
useful when considering circular or spiral phase portrait behaviour as polar descriptions
lend themselves to simple descriptions of circular or spiral shapes.

We have the connecting equations r2 = x2 + y2 and tan(θ) = y
x . It follows that we can

use for ṙ
rṙ = xẋ + yẏ,

and for θ̇,
d
dt
(tan(θ)) =

d
dt

(y
x

)
=⇒ sec2(θ)θ̇ =

xẏ− yẋ
x2 .

Using sec2(θ) = 1 + y2

x2 = r2

x2 , we obtain an equation for θ̇ as:

θ̇ =
xẏ− yẋ

r2 .

Note that polar coordinates (r, θ) are more revealing of the behaviour of the system in
equation 4.15. The change of coordinates r =

√
(u2 + v2) and θ = arctan( v

u ) reduces the
system to

ṙ = αr, θ̇ = β.
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4.2.3 Construction of the matrix P

To identify for a given coefficient matrix A, the Jordan form J = Ji , where Ji, i = 1, 2, 3 (as
defined in equation 4.11 ), recall that A and J have the same eigenvalues as they are similar
matrices, and we have:

(i) A reduces to J1 if it has real distinct eigenvalues λ1, λ2.

(ii) A reduces to J3 if it has complex eigenvalues α± iβ, with β 6= 0.

(iii) A reduces to J2 if it has real repeated eigenvalues λ, λ and is not diagonal, else it
reduces to J1 if diagonal (in this latter case A is already in the form of J1 = A = λI).

Theorem 4.2. Given matrix A, the conjugating matrix P which reduces to Jordan form is for:

(i) J = J1, P = [v1, v2], where v1 and v2 are eigenvectors of the distinct eigenvalues λ1 and
λ2 respectively.

(ii) J = J2, P = [v1, v2], where v1 is an eigenvector of A corresponding to the repeated
eigenvalue λ and v2 satisfies the equation (A− λI)v2 = v1.

(iii) J = J3, P = [v1, v2], where v1 and v2 are the real and imaginary parts of the complex
eigenvector of A corresponding to the eigenvalue λ1 = α− iβ.

Check:

(i) J1:

AP =A [v1, v2] = [Av1, Av2] = [λ1v1, λ2v2] = PJ1

(ii) J2:

AP =A [v1, v2] = [Av1, Av2] = [λv1, v1 + λv2] = PJ2.

(iii) J3:

Let v1 + iv2 be a complex eigenvalue of A for the eigenvalue λ1 = α− iβ. Then

A(v1 + iv2) =(α− iβ) [v1 + iv2] = (αv1 + βv2) + i(−βv1 + αv2)

Taking real and imaginary parts we have

Av1 = (αv1 + βv2); Av2 = (−βv1 + αv2). (4.16)

Now let P = [v1, v2] and we obtain

AP = [Av1, Av2] = [αv1 + βv2,−βv1 + αv2] = PJ3. (4.17)

Thus we can show for P−1AP = Jk, for some k = 1, 2, 3.
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4.3 Jordan matrix calculations

Consider the system ẋ = Ax with coefficient matrix[
1 1
4 −2

]
. (4.18)

The eigenvalues are solutions of Det(λI − A) = 0 which gives λ2 + λ − 6 = 0 and

so λ1 = 2, λ2 = −3, with corresponding eigenvectors v1 =

[
1
1

]
using Av1 = 2v1, and

v2 =

[
1
−4

]
using Av2 = −3v2. We can now construct the conjugating matrix P for A by

using the eigenvectors as its columns to obtain

P =

[
1 1
1 −4

]
,

i.e.

P−1AP = J =
[

2 0
0 −3

]
.

Thus A gives a saddle fixed point with unstable manifolds on the eigen-direction v1 and
stable manifolds along the eigen-direction v2.

4.3.1 Change of coordinates and eigendirections

We introduced the linear transformation z = Pw with coordinates z = (x, y) (=
[

x
y

]
) and

w = (u, v) (=
[

u
v

]
) which showed the equivalence of the system ż = Az to

ẇ = (P−1AP)w = Jw. (4.19)

Note that

z =

[
x
y

]
= x

[
1
0

]
+ y

[
0
1

]
;

and

z = Pw = [v1|v2]

[
u
v

]
= uv1 + vv2. (4.20)

Hence: [
x
y

]
= uv1 + vv2.

This equation shows that the point (x, y) ∈ R2 has coordinates (u, v) relative to the ordered
base vectors {v1, v2}.

4.3.2 Eigenvalues and node/saddles

Consider ẋ = Ax where

A =

[
λ1 0
0 λ2

]
.
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Figure 15: The u, v− coordinate axes of the transformed system in equation 4.19 with axes given
by the eigenvector v1 which has coordinates (1, 0) in the uv− plane, and the eigenvector v2 which
has coordinates (0, 1).

Then ẋ = λ1x and ẏ = λ2y which gives, by eliminating dt, dy
dx = (λ2y)/(λ1x) and thus

the integral curves are of the form y = Cxλ2/λ1 , C constant. Thus we have when λ1, λ2 are
of the same sign a node with orbits being tangent to the x-axis for λ2/λ1 > 1, and tangent
to the y-axis for λ2/λ1 < 1. For λ2/λ1 = 1, we have a star node where every trajectory is
radial.

For λ1, λ2 opposite sign, we have a saddle, with unstable/stable manifolds along the
axes. Stability is determined by the signs of the eigenvalues λ1 < 0 - stable; λ2 > 0 -
unstable;

Example 4.3. This example addresses node-tangencies for fixed points. Consider the coefficient
matrices

1.
A =

[
4 0
1 2

]
. (4.21)

We have δ = 8 and τ = 6, so we have an unstable node. The fixed point at the origin has
eigenvalues λ1 = 4 with eigenvector v1 = [2, 1]T and λ2 = 2 with eigenvector v2 = [0, 1]T,
see figure 16.

2.
A =

[
4 1
3 2

]
(4.22)

We have δ = 5 and τ = 6, so we have an unstable node with λ1 = 1 and λ2 = 5. The
eigenvectors are v1 = [1,−3]T and v2 = [1, 1]T, see figure 16.
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Figure 16: (a) The phase portrait for system 4.21 is an unstable node, with tangency of orbits
along the v2 eigendirection as λ2/λ1 < 1 and v2 = [0, 1]T. For (b) The phase portrait for system
4.22 is an unstable node, with tangency of orbits along the v1 eigendirection as λ2/λ1 > 1 and
v1 = [1,−3]T.

4.3.3 Eigenvalues and spirals/centres

Consider ẋ = Ax where

A =

[
α −β
β α

]
.

Converting to polar coordinates gives us ṙ = αr, θ̇ = β. For β 6= 0, we have stable
spirals to the origin for α < 0, and unstable spirals for α > 0. The direction of rotation
(clockwise-anti clockwise) is determined by the sign β. β = 0 provides a star node with
radial trajectories.

4.3.4 Eigenvalues and improper nodes

Consider ẋ = Ax where

A =

[
λ 1
0 λ

]
.

We have a stable improper node for λ < 1 and an unstable improper node for λ > 1.

4.4 The Trace(A)− Det(A) classification of fixed points

Recall that the set of eigenvalues of the matrix A are given by the characteristic polynomial
Det(λI−A) = 0 in the variable λ. For a 2× 2 matrix A the polynomial takes the form, cf.
equation 4.4,

λ2 − τλ + δ = 0,
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Figure 17: The phase portraits for unstable improper nodes systems given in 4.23 , with tangency
of orbits along the [1, 0]T eigendirection in (a), along the [1, 1] eigendirection in (b). Note also, as
a help in seeing the form of the phase portraits, null clines are illustrated in the figure (green), i.e.
for (a): the ẋ = 0 nullcline is the line y + 2x = 0, whereas for (b): the corresponding nullcline for
u̇ = 0, is given by dy

dx = −1, (perpendicular to v1 = [1, 1]T) which is given by the line 5x + y = 0.

where τ = Tr(A) and δ = Det(A), and the roots are then given by

λ =
τ ±

√
(τ2 − 4δ)

2
.

Example 4.4. Sketch the phase portraits of ẋ = Ax, for

(a) A =

[
2 1
0 2

]
, (b) A =

[
4 −1
1 2

]
. (4.23)

(a) The single eigendirection for the repeated eigenvalue λ = 2 is [1, 0]T, i.e. the x− axis. The
nullclines is y = 0 for ẏ = 0, and 2x + y = 0 for ẋ = 0.

(b) The matrix A =

[
4 −1
1 2

]
has a repeated eigenvalue λ = 3. A is not diagonal, therefore the

phase portrait for A is not a star-node (note that if A is conjugate to the diagonal matrix λI, then
A = λI !), and is therefore an unstable improper node.

The eigenvector equation gives A
[

x
y

]
= 3

[
x
y

]
, and the eigendirection is given by x = y, i.e.

we can choose v1 = [1, 1]T. The second requirement is a vector v2 which satisfies

(A− λI)v2 = v1.

This has a solution v2 = [2, 1]T. It can be checked that P = [v1|v2] =

[
1 2
1 1

]
satisfies

AP = P
[

3 1
0 3

] (
=

[
3 7
3 4

])
(much easier to check!)
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and so we conclude that P−1AP =

[
3 1
0 3

]
, a Jordan matrix of type J2.

We can capture the regions of the Trace-Det plane which have the different types of
associated fixed points. See figure 18.
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Figure 18: The types of fixed points which occur in different regions of the Trace-Det(τ− δ) plane.
The axes and the discriminant of λ2− τλ + det = 0, i.e. τ2 = 4δ form boundaries for the regions.

4.5 Stability definitions revisited

(i) The stable manifold of the fixed point x∗ is the set of points x0 such that the solution
curve x(t) with x(0) = x0 satisfies x(t)→ x∗ as t→ ∞ .

(ii) The unstable manifold of the fixed point x∗ is the set of points x0 such that the solution
curve x(t) with x(0) = x0 satisfies x(t)→ x∗ as t→ −∞ .

(iii) The unstable manifold of a linear saddle fixed point x∗ is the bi-infinite line through
the fixed point x∗ given by the unstable eigendirection.

(iv) The stable manifold of a linear saddle is the bi-infinite line through the fixed point x∗

given by the stable eigendirection.

(v) Stable and unstable manifolds of a saddle fixed point are also referred to as separatri-
ces.

(vi) A fixed point x∗ is attracting if there exists an open neighbourhood U of x∗ such that
all orbits with x(0) ∈ U satisfy x(t) → x∗ as t → ∞. It can be locally or globally
attracting. For locally attracting, the orbits would need to remain in arbitrarily small
neighbourhoods as t→ ∞, i.e be asymptotically stable.
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(vii) The basin of attraction of a fixed point x∗ is the set of initial conditions x0 of trajectories
x(t) (i.e. x(0) = x0) such that limt→∞ x(t) = x∗.

(viii) A fixed point x∗ is Liapounov stable if all trajectories starting sufficiently close to x∗

remain close to it for all time(and not just as t → ∞). More precisely, given any
neighbourhood V of x∗, there exists a neighbourhood U of x∗ such that all trajectories
passing through U remain in V for all t ∈ R+. (Note same as stable but we consider
Liapunov functions to identify stability of fixed points in chapter 5)

(ix) Liapounov stable fixed points which are not asymptotically stable are said to be neu-
trally stable.

(x) A fixed point x∗ is asymptotically stable if is both Liapounov stable and locally attract-
ing, i.e. all orbits asymptotically approach x∗ as t increases and remain in any local
neighbourhood.

Example 4.5. Some examples of the use of the terms stable and unstable manifolds for linear sys-
tems.

(i) The stable manifold of a stable linear node is R2.

(ii) The unstable manifold of an stable linear spiral is {0}, the origin of R2.

(iii) The stable manifold of an stable linear spiral is R2.

(iv) The stable manifold of an unstable linear spiral is {0}, the origin of R2.

(v) The unstable manifold of a stable linear node is {0}, the origin of R2.

(vi) A linear centre fixed point is neutrally stable, stable but not asymptotically stable.
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5 Nonlinear dynamical systems on R2

5.1 Phase plane and phase portraits

Recall the concept of a first-order ODE in n-variables, x1, . . . , xn ∈ R, where

ẋ1 = f1(x1, . . . , xn),
. . . ,

ẋn = fn(x1, . . . , xn). (5.1)

and x1, . . . , xn ∈ R, depend (or are functions of) the independent variable time t. Also, by
introducing the vector notation x = (x1, . . . , xn) ∈ Rn, and the vector function

f(x) = ( f1(x), . . . , fn(x)) : Rn → Rn

allows the system of equations 5.1 to be written as a single vector equation,

ẋ = f(x),

The vector field f on Rn associates a vector, f(x), to each point x = (x1, . . . , xn) ∈ Rn.
These equations are describing how the variables x1, . . . , xn are evolving or changing with
time, hence the concept of a dynamical system. Each function fi, i = {1, . . . , n} is assumed
continuously differentiable with respect to x. The case n = 2, which is the focus of this
section, is therefore of the form ẋ1 = f1(x1, x2), ẋ2 = f2(x1, x2). Given the low number
of variables, it is useful to simplify the notation of this chapter to

ẋ = f (x, y), ẏ = g(x, y) (5.2)

where x = (x1, x2)
def
= (x, y) and f = ( f1, f2)

def
= ( f , g).

Our main objects of interest will be, again, fixed points or equilibrium points. However,
the new phenomenon in 2-dimensional phase portraits to be considered is the closed or
periodic orbit.

Definition 5.1. The point x∗ = (x∗, y∗) ∈ R2 is said to be a fixed point of the system 5.2 if the
solution (x(t), y(t)) ≡ x∗ for t ∈ R is satisfied by the system. This requires ( f (x∗), g(x∗)) =
(0, 0).

Definition 5.2. The solution curve (x(t), y(t)) ∈ R2 of the system 5.2 is said to be a periodic or
closed orbit of period T if x(t) ≡ x(t + T) for all t ∈ R, and T > 0 is the minimum such value,
i.e. x(t) 6= x(0), for any t ∈ (0, T).

A fixed point could be interpreted as a trivial periodic orbit if T = 0 were to be allowed,
but it is non-trivial periodic orbits, with positive period T > 0, that we are interested in this
section.

5.1.1 Existence and uniqueness of solutions for systems in Rn

Theorem 5.1. Let f : U(⊆ Rn) → Rn, where U is an open set, and consider the initial value
problem of

ẋ = f(x),

where x ∈ Rn, f : Rn → Rn, and x(0) = x0 ∈ U.
- If f is continuous, then there is a solution x(t) such that x(0) = x0 defined for some open

interval (a, b) ∈ R which contains 0 ∈ R.
- if f is continuously differentiable, then the solution x(t) is unique.

35



5.2 Linearisation

This is an important 2-dimensional extension of the linear stability we saw earlier in dy-
namical systems on the real line R. Suppose that x∗ = (x∗, y∗) is a fixed point of 5.2, i.e
f(x∗) = 0. Introduce local coordinates (u, v) ∈ R2 at x∗, with x = x∗ + (u, v).

The Taylor expansion of f at the fixed point x∗ gives

f(x) =
[

f1(x, y)
f2(x, y)

]
= f(x∗) + Df(x∗)

[
u
v

]
+ O(|(u, v)|2). (5.3)

We are using column vector notation here to allow for simpler matrix expressions..
The first order coefficient matrix Df(x) is called the Jacobian matrix and has the form

Df(x) =

[
∂ f1
∂x (x

∗) ∂ f1
∂y (x

∗)
∂ f2
∂x (x

∗) ∂ f2
∂y (x

∗)

]
, (5.4)

where f = ( f1, f2).
Ignoring terms of higher order than degree 1 in the local coordinates u, v, at the fixed

point x = x∗, where f(x∗) = 0, we obtain a linear system[
u̇
v̇

]
= Df(x∗)

[
u
v

]
. (5.5)

called the linearised system of ẋ = f(x) at x∗.

5.2.1 Hartman-Grobman Linearisation Theorem (HGLT)

A subset of the linear systems that we have considered remain qualitatively the same un-
der sufficiently small perturbations of the entries of the coefficient matrix. Such linear
systems are said to be hyperbolic.

For example, a sufficiently small change in the coefficient matrix A for a (un)stable
node or spiral, does not change the fixed point type. Why? - because a small change in
the entries of the matrix A results in a small change in the values of Tr(A) and Det(A) and
therefore the roots of the eigenvalue equation λ1, λ2.

Similarly, a sufficiently small change in a saddle also preserves the opposite sign eigen-
values and therefore the saddle itself. However, an arbitrarily small change in a coefficient
matrix with purely imaginary eigenvalues can perturb it into a matrix with non-zero trace,
and hence a centre fixed point can become a spiral.

Definition 5.3. A linear system ẋ = Ax is said to be hyperbolic if none of the eigenvalues of the
matrix A have zero real part.

These are precisely the linear systems which do not change their qualitative type un-
der sufficently small perturbations. For example, a linear system of centre-type is non-
hyperbolic, whereas a linear system of stable node-type is hyperbolic. Linearisations at fixed
points which are hyperbolic are key to the following Hartman-Grobman Linearisation The-
orem

Theorem 5.2. (HGLT) The qualitative behaviour of a dynamical system and its linearised system
on a sufficiently small neighbourhood of a fixed point are the same provided the linearisation is
hyperbolic.
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The following examples exhibit systems where HGLT fails to give clarification on the
nature of a fixed point of a nonlinear system.

Example 5.1. Consider the system

ẋ = y− x3, ẏ = −x− y3 (5.6)

at the fixed point (x, y) = (0, 0). The Jacobian matrix at a point x = x∗ = (x, y) for f(x) =
(y− x3,−x− y3) is

Df(x∗) =
[
−3x2 1
−1 −3y2

]
(5.7)

which gives the linearised system ẋ = y, ẏ = −x at the fixed point x = 0 which is a linear centre.
However the non-linear system it approximates, the dynamic 5.6 gives rise to a stable spiral (note,
in polar coordinates, rṙ = −(x4 + y4) =⇒ ṙ = −r3(cos4(θ) + sin4(θ)), i.e. which implies that
r(t)→ 0 as t→ ∞).

Example 5.2. Consider the system

ẋ = −x2, ẏ = −y (5.8)

at the fixed point (x, y) = (0, 0). The Jacobian matrix at a point x = x∗

is
Df(x∗) =

[
0 0
0 −1

]
(5.9)

and the corresponding linear system has a line of fixed points on the x-axis. However the non-linear
system it approximates, is a 2-dimensional saddle-node ("half saddle and half node") which has just
one fixed point, cf. figure 19 (c).

Example 5.3. Consider the system

ẋ = y− xy2, ẏ = −x + yx2, (5.10)

at the fixed point x∗ = (0, 0). The Jacobian matrix at the point x∗ is

Df(x∗) =
[
−y2 1− 2xy

−1 + 2xy x2

]
(0,0)

=

[
0 1
−1 0

]
(5.11)

Again, this linearisation is not hyperbolic, eigenvalues are λ = ±i, and so the fixed point does
not satisfy the requirements of HGLT - it’s linearisation is a centre. However the non-linear system
it approximates, the dynamic system 5.10 , also has a centre at the origin. Check the polar form of
the equation which gives ṙ = 0. Does the local centre extend out to be a global centre on the whole
plane R2? [Hint: Consider the complete set of fixed points for the system.]

The other two non-linear examples given above have phase portraits different from
their linearisations at the fixed points.

Example 5.4. Show that the system

ẋ = −y + ax(x2 + y2), ẏ = x + ay(x2 + y2)

has the polar form ṙ = ar3, θ̇ = 1. Explain why the HGLT does not offer a clear conclusion on the
nature of the fixed point at the origin. What can you deduce from the polar form for the cases a < 0,
a = 0, and a > 0?
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Figure 19: (a) is the phase portrait of the non-linear system 5.6 which is linearly approximated by a
centre at the origin. It can be shown that 5.6 has a spriral orbit structure at the origin by changing
to polar coordinates and examining ṙ and its sign. (b) is the phase portrait (a) magnified, and the
spiral structure of the fixed point becomes less clear, as the pitch of the cycle becomes relatively
smaller close to the fixed point; (c) is the phase portrait of 5.8 with a non-hyperbolic linearisation so
it does not satisfy the requirements of HGLT. The linearised system is ẋ = 0, ẏ = −1. The phase
portrait is easy to discern from one dimensional considerations as the system is decoupled and is a
product of a 1-dimensional saddle-node on the x− coordinate (ẋ = −x2), and a stable fixed point
on the y− coordinate (ẏ = −y).

5.3 Examples of non-linear systems

We consider some more examples of systems ẋ = f(x)

Example 5.5. Consider the system with f(x) = (−x + x3,−2y).(5.12)
The equations are decoupled with ẋ = −x + x3 and ẏ = −2y. Fixed points are given

by x∗1 = (0, 0), x∗2 = (1, 0), x∗3 = (−1, 0). The Jacobian matrix is

Df(x∗) =
[
−1 + 3x2 0

0 −2

]
(5.13)

x∗1 : Df(x∗)|x∗1 =

[
−1 0
0 −2

]
; Eigenvalues: λ1 = −1, λ2 = −2; v1 =

[
1
0

]
; v2 =

[
0
1

]
;

x∗2 : Df(x∗)|x∗2 =

[
2 0
−0 −2

]
; Eigenvalues: λ1 = 2, λ2 = −2; v1 =

[
1
0

]
; v2 =

[
0
1

]
;

x∗3 : Df(x∗)|x∗3 =

[
2 0
−0 −2

]
; Eigenvalues: λ1 = 2, λ2 = −2; v1 =

[
1
0

]
; v2 =

[
0
1

]
;

Example 5.6. Consider the system with

f(x) = (y, x− x3). (5.14)

Fixed points are given by x∗1 = (0, 0), x∗2 = (1, 0), x∗3 = (−1, 0).
The Jacobian matrix is

Df(x∗) =
[

0 1
1− 3x2 0

]
(5.15)
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Figure 20: (a) The phase portrait of the system 5.12. The full phase portrait in the plane shows
the phase portraits of two decoupled ODES given in the system 5.12 by looking at the flows on the
x and y-axes. It can be seen that the 2-dimensional phase portrait is a "product flow" of the two
component 1-dimensional flows. (b) The phase portrait of 5.14, showing the eigendirections of the
saddle fixed point at the origin.

1. x∗1 : Df(x∗)|x∗1 =

[
0 1
1 0

]
; Eigenvalues: λ1 = 1, λ2 = −1; v1 =

[
1
1

]
; v2 =

[
1
−1

]
; saddle,

HGLT applies;

2. x∗2 : Df(x∗)|x∗2 =

[
0 1
−2 0

]
; Eigenvalues: λ1 = i

√
2, λ2 = −i

√
2; non-hyperbolic(centre) -

HGLT does not apply ;

3. x∗3 : Df(x∗)|x∗3 =

[
0 1
−2 0

]
; Eigenvalues: λ1 = i

√
2, λ2 = −i

√
2; non-hyperbolic(centre) -

HGLT does not apply.

So by using the HGLT we cannot be sure of the non-linear status of the fixed points at (1, 0)
and (−1, 0). Fortunately we can find integral curves for this system if we reconfigure the system
equations 5.14 as

dt =
dx
y

=
dy

x− x3 (5.16)

from which we get, by separating variables,

V(x, y) =
x4

4
− x2

2
+

y2

2
= constant (5.17)

i.e. the quantity V is conserved by the system 5.14 which means integral curves of the system are
confined to the level curves of V. Of course, V = constant curves are equivalent to contour lines
or level curves (i.e z = constant of the surface z = V(x, y) in 3-dimensional xyz-space.
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Figure 21: (a) The phase portrait for the system 5.23 follows the level curves of the first integral V.
(b) Note the ’Mathematica’ picture of the surface z = V(x, y) does not capture the saddle point at
the origin and its unstable/stable manifolds, but it does show up the non-linear centres at (±1, 0)
well.

The critical(stationary) points of the surface z = V(x, y) occur when the condition ∂V
∂x = ∂V

∂y =

0. These are the fixed points of the underlying system. The type of critical point - maximum,
minimum, saddle is determined by the discriminant

D = VxxVyy −V2
xy,

which gives: maximum for D > 0 and Vxx < 0; minimum for D > 0 and Vxx > 0; saddle for
D < 0.

So the critical points are (0, 0) - saddle and (1, 0), (−1, 0) - both minimums. Thus this
means that the orbits around the fixed points (1, 0), (−1, 0) are closed (periodic orbits), and the
"saddle point" or "col" of the surface confirms the existence of the saddle fixed point by the HGLT.
It should be noted that the contours show the global nature of the orbits of the system. We see that
the unstable and stable saddle manifolds coincide, i.e. the saddle unstable manifolds leave the fixed
point (0, 0) and fold around to return as the stable manifolds! The contour through the saddle point
has the form of a "figure-8". This is a highly non-linear feature which contrasts with the straight
lines of a linear saddle.It is called a pair of saddle-connections as the unstable manifold and the
stable manifolds of the saddle are the same in each of the two branches!

Example 5.7. Consider the system with

f(x) = (x(3− (x + 2y)), y(2− (x + y))) (5.18)

The Lotka-Volterra model of competing species. The simplest model for each species with differ-
ent reproductive rates and carrying capacity could be modelled by the decoupled logistic equations

f(x) = (x(3− x), y(2− y)). (5.19)
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Figure 22: (a) The phase portrait of the prey-predator system 5.20 showing the four fixed points in
the positive quadrant. An approximate sketching of the stable and unstable manifolds of the saddle
have also been added; (b), the phase portrait with superimposed (i) nullclines(green), (ii) the direc-
tion of flow on the nullclines(small red arrows), and (iii) eigendirections at the fixed points(purple).

If coupling terms are introduced to model the interaction between the two species, then we obtain

ẋ = (x(3− (x + 2y)), ẏ = y(2− (x + y)) (5.20)

The fixed points are x∗1 = (0, 0), x∗2 = (3, 0), x∗3 = (0, 2), x∗4 = (1, 1). The Jacobian matrix is

Df(x∗) =
[

3− 2x− 2y −2x
−y 2− x− 2y

]
(5.21)

x∗1 : Df(x∗)|x∗1 =

[
3 0
0 2

]
; Eigenvalues: λ1 = 3, λ2 = +2; v1 =

[
1
0

]
; v2 =

[
0
1

]
; (unstable

node)

x∗2 : Df(x∗)|x∗2 =

[
−3 −6
0 −1

]
; Eigenvalues: λ1 = −3, λ2 = −1; v1 =

[
1
0

]
; v2 =

[
3
−1

]
;

(stable node)

x∗3 : Df(x∗)|x∗3 =

[
−1 0
−2 −2

]
; Eigenvalues: λ1 = −1, λ2 = −2; v1 =

[
1
−2

]
; v2 =[

0
1

]
; (stable node)

x∗4 : Df(x∗)|x∗4 =

[
−1 −2
−1 −1

]
; Eigenvalues: λ1 = −1 +

√
2, λ2 = −1−

√
2; v1 =

[√
2
−1

]
;

v2 =

[√
2

1

]
(saddle).

The nullcline for horizontal motion is given by ẏ = 0 and is the set of points (x, y) such that
either x + y = 2 or y = 0 and for vertical motion we have x = 0 and x + 2y = 3. For initial
conditions in the (realistic) positive quadrant almost all orbits have limiting points at either the
point (0, 2) or (3, 0) in which case either the x or the y population dies out respectively.
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Figure 23: The phase portrait of the prey-predator system 5.20 showing the four fixed points in the
positive quadrant together with an approximate sketching of the stable and unstable manifolds of
the saddle point at (x, y) = (1, 1). The basins of attraction of the fixed points at (0, 2) and (3, 0)
are shaded and separated by the stable manifold of the saddle fixed point with coordinates (1,1).
Note that every orbit in the positive quadrant asymptotically approaches just one or the other of
these two fixed points except for the stable manifold of the saddle point and the origin.

The only initial conditions which avoid that outcome are those on the stable manifold of the
saddle point x∗4 = (1, 1). So, except for this special set of of initial points on the saddle stable
manifold, the quadrant splits into two regions of initial conditions, A and B, which are respectively
asymptotic to either the fixed point (0, 2) (A) or (3, 0)(B), see figure 23. The regions A and B are
said to be the respective basins of attraction for the fixed points.

The nullcline for horizontal motion is given by ẏ = 0 and is the set of points (x, y) such
that either x + y = 2 or y = 0 and for vertical motion we have x = 0 and x + 2y = 3. For
initial conditions in the (realistic) positive quadrant almost all orbits have limiting points
at either the point (0, 2) or (3, 0) in which case either the x or the y population dies out
respectively.

The only initial conditions which avoid that outcome are those on the stable manifold
of the saddle point x∗4 = (1, 1). So, except for this special set of of initial points on the
saddle stable manifold, the quadrant splits into two regions of initial conditions, A and B,
which are respectively asymptotic to either the fixed point (0, 2) (A) or (3, 0)(B), see figure
23. The regions A and B are said to be the respective basins of attraction for the fixed points.

5.4 Conservative and gradient systems

A real-valued function H : R2 → R is a constant of the motion or first integral of the system
ẋ = f(x), x ∈ R2, and f : R2 → R2 if H is constant for any solution curve, i.e. H(x(t)) ≡
H(x(0)) for all t ∈ R. The "trivial constant" of the motion that H(x, y) ≡ C, a constant,
on an open set in R2 is not allowed as it offers no information on the nature of the solution
curves.
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For H(x), where x = (x, y) to be a constant of the motion, we require

d
dt
(H(x(t)) ≡ 0,

which implies
d
dt
(H(x(t)) =

∂H
∂x

ẋ +
∂H
∂y

ẏ ≡ 0.

5.4.1 Conservative systems

Newton’s second law of motion, (II), states that the force applied to an object is propor-
tional to its acceleration, with the constant of proportionality being the mass of the object.
This law can be written as an ODE in the form

mẍ = F(x)

where x is the position coordinate, m is the mass, and F(x) is the force applied at the
position x. Converting this second order ODE into a first order equation, we obtain

ẋ = y; ẏ =
1
m

F(x).

Define the function E : R2 → R by

E(x) = E(x, y) =
1
2

my2 + V(x), (5.22)

where
V(x) = −

∫
F(x)dx.

Now
d
dt
(E(x(t)) =

∂E
∂x

ẋ +
∂E
∂y

ẏ = −F(x)y + myẏ = y(−F(x) + mẍ) ≡ 0,

by Newton II.
The function E given in 5.22, the energy, is a constant of the motion for Newton II.

Energy is conserved in this system - i.e. it is a conservative system. The energy E is seen
as being comprised of two components: 1

2 my2 is the kinetic energy; V(x) is the potential
energy

Theorem 5.3. Let ẋ = f(x), x ∈ R2, be a conservative system, with constant of motion H, then
the system has no attracting points.

Proof. If there were to exist a neighbourhood U of a fixed point x∗ of the system for which
every solution x(t) with x0 ∈ U satisfied x(t) → x∗ as t → ∞, then by continuity of H,
H(x(t))→ H(x∗), as t→ ∞.

Since H(x(t)) is constant as t varies, it follows that H(x(0)) = H(x∗) on the neighbour-
hood U of x∗, i.e. H(x) = H(x∗) for all x ∈ U and is therefore a trivial constant of the
motion.
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Example 5.8. Consider a Newton II system with potential energy V(x) = −1
2 x2 + 1

4 x4. The
system we obtain using the equation 5.22 is

ẋ = y, ẏ = x− x3
(
= −∂V

∂x

)
, (5.23)

which we considered earlier in equation 5.14. We have chosen m = 1 as its numerical value does
not change the qualitative behaviour of the system. The system has fixed points at (0, 0) - a saddle,
and (±1, 0), are both centres. See figure 21.

5.4.2 Gradient systems

Consider a differentiable function F : R2 → R. The gradient system with potential function
F is

ẋ = −∇F(x), (5.24)

where∇F(x) =
(

∂F
∂x (x),

∂F
∂y (x)

)
. The fixed points of the gradient system are precisely those

points for which ∇F(x) = 0, the so called critical points of F.

Figure 24: The phase portraits of (a) the gradient system 5.24 and (b) the corresponding conserva-
tive system 5.23 with the same potential function E(x, y) = 1

2 my2 + 1
4 x4 − 1

2 x2.

Theorem 5.4. A gradient system has no periodic orbits of positive period T > 0.

Proof. If such a periodic orbit x(t) for 0 ≤ t ≤ T existed for the system 5.24, then the
change in the value ∆F of F would be zero since F(x(0)) = F(x(T)), given x(0) = x(T).
But

∆F =
∫ T

0

dF
dt

dt =
∫ T

0
∇F(x).

dx(t)
dt

dt = −
∫ T

0
||ẋ||2dt < 0.

which provides a contradiction.
We should note that this is the very opposite (or, perhaps, orthogonal!) to the behaviour

of a conservative system.

Example 5.9. Prove that a conservative system with energy E(x, y) = 1
2 my2 + V(x), and a gra-

dient system ẋ = −∇E(x), with the same energy E have orthogonal trajectories in their respective
phase portraits, i.e. the vectors fields of the two systems are mutually orthogonal (hint: expand dE

dt
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Figure 25: The conservative (blue) and gradient (red) systems with the same potential, E - illus-
trated separately in figure 24 - are superimposed to show the mutual orthogonality of the flows (the
dot product of the vector fields at every point of R2 is zero).

and interpret the expression as a dot product of vectors). Note that the gradient system is now seen
in the context of the "total" potential energy being E(x, y), not just the potential energy V(x, y) of
the mixed energy E(x, y) in equation 5.22.
Proof. Given the potential energy function V(x), the total energy function for the corresponding
conservative system is

E(x, y) =
1
2

my2 + V(x),

cf. 5.22 with system equations

ẋC = y, ẏC = −V′(x)
m

The corresponding gradient system for the energy function E(x, y) has the form

ẋG = −∂E
∂x

= −V′(x); ẏG = −∂E
∂y

= −my.

It follows that the dot product of the two vector fields is

(ẋG, ẏG).(ẋC, ẏC) = ẋG.ẋC + ẏG.ẏC = (−V′(x)).y + (−my).(−V′(x)
m

) ≡ 0. (5.25)

Therefore, the conservative and gradient vector fields are orthogonal, see figure 25. This means that
gradient systems follow the lines of maximum slope which are always perpendicular to level curves,
a good direction to avoid when walking down a mountain!

A more general approach to proving orthogonality is the use the fact that energy E = E(x, y) is
conserved for conservative(C) systems, so that

dE
dt

=
∂E
∂x

dxC

dt
+

∂E
∂y

dyC

dt
= −(ẋG.ẋC + ẏGẏC) ≡ 0, (5.26)

since (ẋG, ẏG) = (− ∂E
∂x ,− ∂E

∂y ). Interpreting the dot product ẋG.ẋC + ẏGẏC = 0 of equation 5.26
geometrically implies that the vector fields (ẋG, ẏG) and (ẋC, ẏC) are orthogonal for any energy
function.
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Figure 26: (a) The phase portrait of the system 5.27 , and (b) the corresponding surface plot, S, of
the potential F(x, y) = −x sin(y). Note that the vector field is not following the level curves of S,
but the perpendicular directions of steepest slope.

Example 5.10. Consider the following systems:

(i) The system
ẋ = sin(y); ẏ = x cos(y) (5.27)

is a gradient system with potential function F(x, y) = −x sin(y). So the system has no
periodic orbits, see figure 26.

(ii) The system obtained from the ODE ẍ + ẋ3 + x = 0 has no periodic solutions. The corre-
sponding system is ẋ = y, ẏ = −x − y3. If the system is of gradient type, thenit could be
concluded that there are no periodic orbits. This is not a gradient system: if a potential F(x, y)
existed, then ∂F

∂x (x) = −y and ∂F
∂y (x) = x + y3, but then we would have

∂

∂x

(
∂F
∂y

)
=

∂

∂y

(
∂F
∂x

)
, (5.28)

which is not true for this system. The condition 5.28 is, in fact, a necessary and sufficient
condition for the existence of the potential function F. Hence, we need to show the existence
of non-periodic solutions in a different way. Note that the linearised system at the origin is
ẋ = y; ẏ = −x, which has energy E(x, y) = 1

2(x2 + y2) which invites the possibility of an
investigation using polar coordinates. Calculating dE

dt , we obtain dE
dt = xẋ + yẏ = −y4 ≤ 0.

It follows that ∆E =
∫ T

0 Ėdt = 0 only if y(t) ≡ 0 along an orbit. But,

y(t) ≡ 0 =⇒ ẋ(t) ≡ 0 and ẏ(t) ≡ 0,

which means that the orbit is a fixed point and is not a period orbit.

5.5 Limit cycles

We now consider the phenomenon of an isolated periodic orbit or closed curve, called a limit
cycle. This is to be compared with many examples already considered of infinite families
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Figure 27: Phase portraits: (a) for the system 5.29 - an unstable spiral fixed point at the origin, and
a stable limit cycle on the circle r = 1; (b) for the system 5.30 - an unstable spiral fixed point at the
origin, and a limit cycle on the circle r = 1 which is stable from the region 0 < r < 1 and unstable
into the region 1 < r.

of concentric closed curves around a centre-type fixed point such as arise in conservative
systems.

Definition 5.4. A limit cycle L is an isolated periodic orbit, which is NOT a fixed point. Isolated
means there exists a neigbourhood set U ⊃ L which does not contain any other closed orbits.

Simple examples of phase portraits with limit cycles are most easily described using
polar coordinates.

Example 5.11. Both of the following examples have a limit cycle formed by the circle r = 1. Noting
the signs of ṙ show that (i) has a stable limit cycle, and (ii) has a limit cycle which is stable from the
"inside" region, r < 1, and unstable on the "outside" region, r > 1.

(i)
ṙ = r(1− r), θ̇ = 1. (5.29)

Note ṙ > 0 for 0 < r < 1, and ṙ < 0 for 1 < r.

(ii)
ṙ = r(1− r)2, θ̇ = 1. (5.30)

Note ṙ > 0 for 0 < r < 1, and for 1 < r.

The existence of a limit cycle which is stable or attracting means that the system over
longer time will settle down to a specific oscillation for annular neighbourhood of initial
conditions which contains the cycle. This cyclic behaviour can often be a very important
feature to observe and understand and maintain, as many biological, physiological, physi-
cal, chemical, industrial processes, and electronic devices are usually driven and sustained
by a stable periodic process which is exhibited by a stable limit cycle.
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Figure 28: The Van der Pol oscillator for (a) µ = 0.05, and (b) µ = 0.5. For (a), the phase portrait,
although very qualitatively different from a centre with the limit cycle present, is, nevertheless,
quantitatively close to the flow on concentric circles which occurs for µ = 0. In (b), the phase
portrait is more distorted from the circular form it takes for µ very small, but the limit cycle is now
more apparent.

Example 5.12. Van der Pol Oscillator This is a celebrated system discovered by the Dutch en-
gineer in 1920. It modelled fluctuations and has been widely used in physics, engineering and
biological modelling. Called the Van der Pol Oscillator, it has the form of a second order ODE in
one real variable x as:

ẍ + µ(x2 − 1)ẋ + x = 0,

where µ ∈ R is a parameter. The corresponding first order system in 2 variables,

ẋ = y, ẏ = −x− µ(x2 − 1)y,

has a fixed point at the origin (x, y) = (0, 0). The Jacobian matrix is

Df(x∗) =
[

0 1
−1 µ

]
,

where f(x) = (y,−x− µ(x2 − 1)y), with eigenvalues λ = (µ±
√
(µ2 − 4))/2.

Therefore, by HGLT, we have spirals for |µ| < 2 which are unstable for µ > 0 and stable for
µ < 0. It can also be shown that orbits with initial values at sufficiently large radial distance r
spiral inwards which are then met by orbits spiralling out from the origin. The resulting collision
of competing orbits is resolved by the existence of a stable limit cycle, see figure 28.

5.6 Liapounov Functions

Liapounov functions focus on a generalisation of the sort of argument in the previous
example where polar coordinates were used. Reconsider the system

ẋ = y− x(x2 + y2); ẏ = −x− y(x2 + y2),
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which has a linearised centre fixed point at the origin ẋ = y; ẏ = −x. Consider the
function L(x, y) = x2 + y2. The level curves are concentric circles centred on the origin. It
follows dL

dt (t) = 2xẋ + 2yẏ = −2(x2 + y2), is negative for all (x, y) 6= 0.
Therefore L(x(t)) decreases with time as t increases, and so the distance of x(t) to the

origin decreases with time t. This already shows that the origin is a stable fixed point. In
fact ṙ = −r3, and θ̇ = 1 and so we explicitly know that the origin is a stable spiral (with a
non-linear (cubic ) radial contraction!).

We now formalise this idea for a system ẋ = f(x) with a fixed point at x∗ = 0.

Definition 5.5. Let U be an open set of R2 containing the origin. A real-valued C1 function
L : U → R is said to be positive definite (PD) on U if

(i) L(0, 0) = 0,

(ii) L(x) > 0, ∀ x ∈ U \ {(0, 0)}.

Definition 5.6. The function L : U → R is said to be negative definite (ND) if −L is positive
definite.

Lemma 5.1. The quadratic function L(x, y) = ax2 + bxy + cy2, a, b,∈ R, is positive definite on
U = R2 iff a > 0, b2 − 4ac < 0.

Proof Suppose L is PD, then L(1, 0) = a, and so a > 0. By completing the square on x, we
see

L(x, y) = a
(

x +
b

2a
y
)2

+

(
c− b2

4a

)
y2. (5.31)

Choose x = − b
2a and y = 1 to obtain

L
(
− b

2a
, 1
)
= c− b2

4a
> 0,

which implies b2 − 4ac < 0, since a > 0.
The reverse argument is trivial; using equation 5.31, L(x, y) ≥ 0 and if we impose

L(x, y) = 0, we have x + b
2a y = 0 and y = 0 which implies (x, y) = 0, so the function L is

PD.

Definition 5.7. A positive definite function L defined on an open neighbourhood U of the origin is
said to be a Liapounov function for ẋ = f(x) if dL

dt (x) ≤ 0 for ∀ x ∈ U \ {0}.

Definition 5.8. A positive definite function L defined on an open neighbourhood U of the origin is
said to be a strict Liapounov function for ẋ = f(x) if dL

dt (x) < 0 (ND) for ∀ x ∈ U \ {0}.

Theorem 5.5. Let ẋ = f(x) have a fixed point at x∗ = 0, then

(i) the origin x∗ is stable, (also referred to as Liapounov stable) if a Liapounov function exists,

(ii) the origin x∗ is asymptotically stable if a strict Liapounov function exists.
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Example 5.13. Construct a Liapounov function for the system

ẋ = −x + 4y, ẏ = −x− y3,

to show the asymptotic stability of the fixed point at the origin.
Consider the function L(x, y) = x2 + ay2. For any a > 0, L will be PD. The choice of a needs

to be further refined to ensure dL
dt (t) is ND. We obtain

dL
dt

(x, y) =2xẋ + 2ayẏ = 2x(−x + 4y) + 2ay(−x− y3) (5.32)

=− 2x2 + 2(4− a)xy− 2ay4. (5.33)

By choosing a = 4, we obtain dL
dt (x, y) = −2x2 − 8y4 which is ND . It follows that L is a strict

Liapounov function and by theorem 5.5, and the fixed point x∗ = 0 is asymptotically stable.

5.6.1 Poincaré-Bendixson Theorem

Definition 5.9. For a planar system ẋ = f(x), a point y is an element of the ω-limit set of the
orbit x = x(t) with x(0) = x0 if there exists a sequence tn with limn→∞ tn = ∞ such that
lim x(tn)→ y as n→ ∞. For the α-limit set, limn→∞ tn = ∞ is replaced by limn→∞ tn = −∞.

We consider the possible ω-limit sets ω = ω(x0), where x0 is the initial condition de-
termining the orbit.

Example 5.14. Consider the ω-limit of the following systems:

(i) ṙ = −r, θ̇ = 1. All orbits converge to the origin which is a fixed point, i.e. ṙ = −r, θ̇ = 1.
All orbits converge to the origin which is a fixed point, i.e. ω(x0) = {(0, 0)}.

(ii) ṙ = r(1− r), θ̇ = 1. All orbits, apart from the origin, approach the unit circle, so there are
two possible limit sets i.e. ω(0) = {(0, 0)} and ω(x0) = {(x, y)|x2 + y2 = 1} for x0 6= 0.

(iii) ṙ = r(1− r), θ̇ = 1− cos(θ) + (r − 1)2. There are just two fixed points x∗1 = (0, 0) and
x∗2 = (1, 0) All orbits on the unit circle Γ approach x∗2 , so ω(Γ) = {x∗2}. A more delicate
investigation is needed to see that x∗2 is a saddle node fixed point with a stable eigen-direction
on the x-axis, and a saddle node eigen-direction tangent to the circle. We are able to conclude
that ω(x0) = x∗2 , ∀x0 ∈ R2 \ {x∗1)}, see figure 30.

The following theorem describes the general case.

Theorem 5.6. (Poincaré-Bendixson) Suppose that ẋ = f(x) is a planar system with a finite
number of fixed points. If the positive orbit x+0 = {x(t, x0); t ≥ 0}, where x(0, x0) = x0, is
bounded, then one of the following is true.

The ω-limit set ω(x0) is a

(a) single point x∗, which is a fixed point, and x(t, x0)→ x∗ as t→ ∞.

(b) periodic orbit Γ and either x+0 = Γ, or x+0 spirals towards Γ on one side of Γ.

(c) union of fixed points and orbits whose α− and ω− limit sets are fixed points. Such orbits are
known as heteroclinic and homoclinic orbits, c.f. figure 29.
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Figure 29: Some examples of the α and ω-limit sets in phase portraits for case (c) of the Poincaré-
Bendixson Theorem. The closed orbits, illustrated by the red curves, consist of a finite set of hetero-
clinic or homoclinic orbits (these are orbits which connect saddle points).

To use PBT to exhibit a limit cycle, we may attempt to construct an open bounded set
which contains no fixed points and such that all orbits with initial conditions in D remain
in D for all time. We also have to show that for x0 ∈ D, ω(x0) contains no point on the
boundary of D.

Example 5.15. Consider
ẋ = y; ẏ = −x + y(1− x2 − 2y2). (5.34)

We note that the origin is the only fixed point. We wish to find a positively time invariant annular
region A. Consider the function L(x, y) = 1

2(x2 + y2). We compute the derivative of L along the
orbits of our system:

dL
dt

(t) = (x, y) · (y,−x + y(1− x2 − 2y2)) = y2(1− x2 − 2y2).

For dL
dt (t) > 0, we require x2 + 2y2 < 1 which is implied by 2x2 + 2y2 < 1 or x2 + y2 < 1

2 .
For < 0, we require x2 + 2y2 > 1 which is implied by x2 + y2 > 1. Thus the annulus A given

by 1
2 − ε < x2 + y2 < 1 + ε for sufficiently small ε > 0 has the desired properties. Furthermore,

the the fixed point at the origin is exterior to this region. So PBT applies and the system 5.34 has
a trapping region, A, given by the annular region bounded by the circles r =

√
(1/2− ε) and

r =
√
(1 + ε) which contains at least one periodic orbit. On the boundary circles all orbits enter

the region A with increasing time.

Example 5.16. Consider the polar system

ṙ = r(1− r2) + µr cos(θ), θ̇ = 1, (5.35)

For µ = 0, there is a stable limit cycle (r = 1). We want to show that a limit cycle still exists
for 0 < µ < 1. We again construct an annular trapping region bounded by two circles r = rmin
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Figure 30: The ω-limit sets for the three systems of example 5.14. (i) A fixed point at the origin;
(ii) a stable limit cycle of radius 1; (iii) the fixed point (1, 0), and the circle r = 1.

Figure 31: (i) the isoclines of the system 5.36 for the choice of a = b = 1 with the appropriate
horizontal and vertical flow directions ; (ii) the indicative direction of the flow on the quadrilateral
with all flow directions pointing to the interior of the region.

and r = rmax such that ṙ < 0 on the outer circle, and ṙ > 0 on the inner circle, so that orbits
entering the annulus are trapped there, as none can escape. If we can find such circles then, by
PBT, there exists at least one limit cycle as θ̇ 6= 0 in the annulus and therefore there are no fixed
points. To find rmin, we require r(1 − r2) + µr cos(θ) > 0. Since cos(θ) ≥ −1, we require
r(1− r2)− µr = r(1− µ− r2) > 0 and since r > 0, we find rmin <

√
(1− µ), which is real for

µ < 1. Likewise we find rmax >
√
(1 + µ).

Example 5.17. A dynamic modelling of a biological system has the form

ẋ = −x + ay + x2y; ẏ = b− ay− x2y, (5.36)

where x, y ≥ 0, and a > 0, b > 0. We need to find a trapping region for this system.
nullclines are : ẋ = 0: y = x

a+x2 ; ẏ = 0: y = b
a+x2 , see figure 31, and the unique fixed point

is x∗ = (b, b/(a + b2). We investigate a quadrilateral trapping region D consisting of the axes, a
line x + y = C, for an appropriate constant C, and a horizontal line, see figure 31. On the x-axis
we have ẏ = b > 0; on the y-axis, we have ẋ = ay > 0 for y > 0. To check the direction of flow on
the line x + y = C, note a dot product of the vector field with inward normal vector gives

(ẋ, ẏ) · (−1,−1) = x− ay− x2y− b + ay + x2y = x− b > 0
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Figure 32: (i) The curve defined by τ = 0 in the ab− parameter plane given by the equation
5.38, and the regions for which τ > 0 and τ < 0; (ii) the phase portrait for equation 5.36 with
a = b = 1 where τ < 0 and the phase portrait has a stable spiral fixed point; (iii) the phase portrait
for equation 5.36 with a = 0.1 and b = 0.5 for which τ > 0. A limit cycle arises using PBT as
a result of the unstable spiral fixed point at x∗ = (0.5, 10

7 ), and the trapping region is shown in
figure 31.

which requires x > b for flow to be inwards. We choose C0 = b + b/a.
The requirement x > b on the line x + y = C necessitates that we contsruct a further segment

connecting the point (0, b/a) and the point (b, b/a) on the line x + y = C0. Note ẋ = −x + b +
x2b/a; ẏ = −x2b/a ≤ 0. To apply PBT we must now exclude the fixed point and a small disc
around it, from D to obtain an annular region. This is only possible if the fixed point x∗ = (b, b

a+b2 )

is unstable to form an annular trapping region. We compute the Jacobian at the general point (x, y)
and then at the fixed point x∗ = (b, b/(a2 + b)), to obtain

Df(x) =
[
−1 + 2xy a + x2

−2xy −(a + x2)

]
; and Df(x∗) =

[
−a+b2

a+b2 a + b2

− 2b2

a+b2 −(a + b2)

]
, (5.37)

with δ = a + b2 > 0 and,

τ = −b4 + b2(2a− 1) + (a + a2)

a + b2 . (5.38)

For instability, we need τ > 0, and the boundary line τ = 0 between the regions τ > 0 and τ < 0
is given by equation 5.38, see figure 32.

5.6.2 Dulac’s Criterion

Theorem 5.7. (Dulac) Let U ⊆ R2 be a simply connected open set and let B : U → R be a C1

function, and let f(x) be a vector field on U with components f1 and f2. If the function

∇(B(f)v(x)) =
∂(B(x) f1(x))

∂x
+

∂(B(x) f2(x))
∂y

is of constant sign and not identically zero in U, then ẋ = f(x) has no periodic orbit lying entirely
in U. The function B is called a Dulac function.

Proof of criterion. Suppose there is a periodic orbit C in U. Let A be the bounded region
whose boundary is C. Green’s theorem relates an integral around the perimeter curve C to
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a double integral on the region A by∫
A
∇(Bf)dx =

∮
C

Bf.ndl

where n is the outward normal to the curve C which has length parameter l. The integral
on the left is non-zero since∇(Bf) has only one sign in A. The integral on the right is zero
because the vector field f is tangent to the curve C at every point and is always normal to
n giving a zero dot-product. The special case B(x, y) ≡ 1 is known as Bendixson’s criterion.

Example 5.18. We show that the system ẋ = x(2− x − y), ẏ = y(4x − x2 − 3) has no closed
orbit in the first quadrant. Choose B(x, y) = 1

xy . We find, for x, y > 0 that

∇(Bv) =
∂

∂x

(
2− x− y

y

)
+

∂

∂y

(
4x− x2 − 3

x

)
= −1

y
.

which is of constant sign for y > 0.
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