
MTH786, Semester A, 2023/24 
Solutions of coursework 1 N. Perra

Problem 1. Let A be a 2 matrix

A =

(
3 4
0 5

)
.

(i) Find eigenvalues, eigenvectors and eigenvalue decomposition of matrix A.

(ii) Let x⃗ be a two-dimensional column-vector. Write the product Ax⃗ in terms of
eigenvectors of matrix A.

(iii) Find singular values, right and left singular vectors and singular value decomposition
of matrix A.

(iv) Let x⃗ be a two-dimensional column-vector. Write the productAx⃗ in terms of singular
vectors of matrix A.

Solutions:

(i) The eigenvalues of matrix A can be found by solving det (A− λI) = 0. In

our case one has

det (A− λI) = det

(
3− λ 4
0 5− λ

)
= (3− λ) (5− λ) = 0 ⇒ λ1,2 = 3, 5.

Corresponding eigenvectors can be found by solving Au = λu for the values

of λ found above.

Au(1) = 3u(1) ⇒

{
3u

(1)
1 + 4u

(1)
2 = 3u

(1)
1

5u
(1)
2 = 3u

(1)
2

⇒ u(1) = (1, 0)T .

Au(2) = 5u(1) ⇒

{
3u

(2)
1 + 4u

(2)
2 = 5u

(2)
1

5u
(2)
2 = 5u

(2)
2

⇒ u(2) = (2, 1)T .

One can build an eigenvalue decomposition of a matrix A by writing

A = QΛQ−1,

where Λ = diag (λ1, . . . , λn) is a diagonal matrix whose diagonal elements

are just eigenvalues of matrix A and Q is the matrix whose i-th column

is an eigenvector corresponding to λi. In our case one has

Λ =

(
3 0
0 5

)
, Q =

(
1 2
0 1

)
, Q−1 =

(
1 −2
0 1

)
.

Therefore, the eigenvalue decomposition of matrix A has a form

A =

(
1 2
0 1

)(
3 0
0 5

)(
1 −2
0 1

)
.
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(ii) Let v be an arbitrary vector. Then, because eigenvalues of matrix A are

linearly independent, one can find α and β such that

v = αu(1) + βu(2). (1)

Matrix A when applied to vector v produces

Av = αλ1u
(1) + βλ2u

(2).

We are only left with finding coefficients α, β. By multiplying vector

1 once by u(1) and once by u(2) we can get{
α
∥∥u(1)

∥∥2 + β
〈
u(1), u(2)

〉
=
〈
v, u(1)

〉
α
〈
u(1), u(2)

〉
+ β

∥∥u(2)
∥∥2 =

〈
v, u(2)

〉 .
If one introduces the so-called Gram matrix

Γ = QTQ

( ∥∥u(1)
∥∥2 〈

u(1), u(2)
〉〈

u(1), u(2)
〉 ∥∥u(2)

∥∥2
)
,

then the solution of above system of equations can be written as(
α
β

)
= Γ−1

(〈
v, u(1)

〉〈
v, u(2)

〉) . (2)

Combining the above, one can write

Av = λ1

(
Γ−1

(〈
v, u(1)

〉〈
v, u(2)

〉))
1

u(1) + λ2

(
Γ−1

(〈
v, u(1)

〉〈
v, u(2)

〉))
2

u(2).

Remark: You may see that the expression above is similar to the one in

case of Singular Value Decomposition (SVD), but is much more complicated.

The problem here is the non-orthogonality of eigenvectors, which is a

consequence of matrix A being non-symmetric. If matrix A would be symmetric,

then most likely Γ would be just a diagonal matrix, that is easy to invert.

(iii) The singular values of matrix A are defined as positive square roots of

eigenvalues of ATA. Let

B := ATA =

(
9 12
12 41

)
.

Then corresponding singular values could be found by solving

det
(
B − σ2I

)
= det

(
9− σ2 12
12 41− σ2

)
=
(
σ2 − 41

) (
σ2 − 9

)
− 144 = 0.

Solutions are then given by σ =
√
5, 3

√
5. Right sigular vectors are found

by solving ATAu = σ2u, while left ones are found by solving AATv =



σ2v, for each value of σ. Normalised singular vectors are then equal

to:

ATAu(1) = 5u(1) ⇒ u(1) =

(
−3

√
10

10

√
10

10

)T

,

ATAu(2) = 45u(2) ⇒ u(2) =

(√
10

10

3
√
10

10

)T

,

AATv(1) = 5v(1) ⇒ v(1) =

(
−
√
2

2

√
2

2

)T

,

AATv(2) = 45v(2) ⇒ v(2) =

(√
2

2

√
2

2

)T

.

Using the above we can rewrite the matrix A in a form of SVD as

A =

(
−

√
2
2

√
2
2√

2
2

√
2
2

)(√
5 0

0 3
√
5

)(
−3

√
10

10

√
10
10√

10
10

3
√
10

10

)
.

(iv) Finally, for any vector w one can write

Aw =
√
5v(1)

〈
w, u(1)

〉
+ 3

√
5v(2)

〈
w, u(2)

〉
.

Problem 2. Let the function f : R2 → R be defined as

f
(
x = (x1, x2)

⊤
)
=

1

2
⟨x,Ax⟩+ ⟨u,x⟩ ,

where A is a real, symmetric, positive definite 2 × 2 matrix, and u is a real vector of
length 2. In other words

f
(
x = (x1, x2)

⊤
)
=

1

2
ax2

1 + bx1x2 +
1

2
cx2

2 + vx1 + wx2,

where

A =

(
a b
b c

)
, and u = (v, w)⊤ .

Our goal is to find such a vector x∗ that minimises f (x).

1. Show that the gradient ∇f is given by ∇f (x) = Ax+ u.

2. Thus proof that the gradient is zero at x∗ = −A−1u.

3. Evaluate f (x∗).

4. Calculate the Hessian Hf (x
∗) and show it is positive. This will finish the proof of

x∗ being a minimizer point of f (x).

Problem 3. Consider the following function of real arguments ω0, ω1.

f (ω0, ω1) =
1

2s

s∑
k=1

(ω0 + ω1xk − yk)
2 , (3)

where x1, x2, . . . , xs and y1, y2, . . . , ys are real-valued constants. This function measures
the mean squared error of a linear approximation for the data points {(xi, yi)}sk=1.



(i) Find partial derivatives ∂
∂ω0

f (ω0, ω1),
∂

∂ω1
f (ω0, ω1),

∂2

∂ω2
0
f (ω0, ω1),

∂2

∂ω0∂ω1
f (ω0, ω1),

∂2

∂ω2
1
f (ω0, ω1).

Hint: you should be able to show that

∂

∂ω0

f (ω0, ω1) = ω0 + xw1 − y,
∂

∂ω1

f (ω0, ω1) = xω0 + x2w1 − xy.

where

x =
1

s

s∑
k=1

xk, x2 =
1

s

s∑
k=1

x2
k, y =

1

s

s∑
k=1

yk, xy =
1

s

s∑
k=1

xkyk.

(ii) Using the above results, find values ω∗
0, ω

∗
1 such that

∇f (ω∗
0, ω

∗
1) = 0

. These should be functions of x1, x2, . . . , xs and y1, y2, . . . , ys.

Hint: you should obtain

ω∗
0 =

y · x2 − x · xy
x2 − x2

, ω∗
1 =

xy − x · y
x2 − x2

.

(iii) Using the expressions of second order derivatives obtained in (i) find the value of
Hessian of the function f for ω0 = ω∗

0 and ω1 = ω∗
1. Prove it is positive definite and

thus show that f (ω0, ω1) attains its minimum value at ω0 = ω∗
0 and ω1 = ω∗

1.

(iv) Find min
ω0,ω1∈R

f (ω0, ω1).

Solutions:

(i) Partial derivatives are equal to

∂f

∂ω0

=
1

s

s∑
k=1

(ω0 + ω1xk − yk) = ω0 + ω1x− y,

∂f

∂ω1

=
1

s

s∑
k=1

xk (ω0 + ω1xk − yk) = ω0x+ ω1x2 − xy,

∂2f

∂ω2
0

=

(
∂

∂ω0

ω0 + ω1x− y

)
= 1,

∂2f

∂ω0∂ω1

=
∂

∂ω1

(ω0 + ω1x− y) = x,

∂2f

∂ω2
1

=
∂

∂ω1

(
ω0x+ ω1x2 − xy

)
= x2,

where we have introduced the following averages

x =
1

s

s∑
k=1

xk, x2 =
1

s

s∑
k=1

x2
k, y =

1

s

s∑
k=1

yk, xy =
1

s

s∑
k=1

xkyk.



(ii) Extremal points can be found by solving ∇f (ω∗
0, ω

∗
1) = 0. This is equivalent

to {
ω∗
0+ ω∗

1x = y

ω∗
0x+ ω∗

1x
2 = xy

.

Solution of the above system of linear equations is given by

ω∗
0 =

y · x2 − x · xy
x2 − x2

, ω∗
1 =

xy − x · y
x2 − x2

.

(iii) The Hessian of function f is equal to

Hf (ω0, ω1) =

(
1 x

x x2

)
.

The 2×2 matrix is positive definite if and only if its both top left

element and the determinant are positive. For the above Hessian we thus

only need to check its determinant. It is equal to

detHf (ω0, ω1) = x2 − x2,

which is non-negative due to AM-QM inequality. This proves that f attains

its minimum at (ω∗
0, ω

∗
1).

Remark: the above Hessian doesn’t depend on values of ω0, ω1 and is non-negative.

This proves that the function f is convex. We will discuss convexity

in details in Weeks 2-3 as this plays a crucial role in optimisation problems.

(iv) Using the above notations we can rewrite function f as

f (ω0, ω1) =
1

2

(
ω2
0 − 2ω0y + y2 + ω2

1x
2 + 2ω0ω1x− 2ω1xy

)
.

Plugging the values we have found above one obtains (after some simple

algebraic manipulations)

f (ω∗
0, ω

∗
1) =

1

2

(
x2 − x2

)(
y2 − y2

)
− (xy − x · y)2

x2 − x2
.

The above is the minimal possible value of f.

Problem 4. As you may have seen in the Lecture 2, the function considered in previous
question is a mean-squared error function of a linear regression for data set {xk, yk}sk=1.
Corresponding values ω∗

0, ω
∗
1 are the coefficients of a linear regression model for data set

{xk, yk}sk=1. Using the above result find the linear regression, i.e. coefficients ω∗
0, ω

∗
1 for

the following people’s height/weight data.
Weight 162.31 183.93 154.34 187.50 187.06 173.42
Height 68.78 68.79 68.50 68.62 68.25 68.49

Now let us add one more data point and recalculate the regression.
Weight 162.31 183.93 154.34 187.50 187.06 173.42 192.34
Height 68.78 68.79 68.50 68.62 68.25 68.49 68.14



Can you explain the origin of such a difference between two results?

Solutions: Let us use the formula from previous question to find an equation

of linear regression. As we have previously seen we just need to calculate

corresponding averages and plug their values into the formulas. The calculation

is easy to present in the form of a table:
Average

Weight 162.31 183.93 154.34 187.50 187.06 173.42 174.76

Height 68.78 68.79 68.50 68.62 68.25 68.49 68.57

Height2 4730.69 4732.06 4692.25 4708.70 4658.06 4690.88 4702.11

Height x Weight 11163.68 12652.54 10572.29 12866.25 12766.85 11877.54 11983.19

Corresponding linear regression coefficients could be then evaluated as

ω0 = 950.07, ω1 = −11.31.

After one more point is added, we obtain a new table
Average

Weight 162.31 183.93 154.34 187.50 187.06 173.42 192.34 177.27

Height 68.78 68.79 68.50 68.62 68.25 68.49 68.14 68.51

Height2 4730.69 4732.06 4692.25 4708.70 4658.06 4690.88 4643.06 4693.67

Height x Weight 11163.68 12652.54 10572.29 12866.25 12766.85 11877.54 13106.05 12143.60

with corresponding linear regression coefficients

ω0 = 1825.70, ω1 = −24.06.

We observe a dramatic change in the slope and shift coefficients. This is

due to the fact that all samples present people with approximately the same

height. Thus the denominator in our formulas for ω0, ω1 becomes small and the

resulting values of parameters become unstable to a small change in data. We

will discuss the ways to overcome such a problem later in the module.


